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Applications of optimal matching analysis in the social sciences are
typically based on sequences of specific social statuses that model
the residential, family, or occupational trajectories of individuals.
Despite the broadly recognized interdependence of these statuses,
few attempts have been made to systematize the ways in which op-
timal matching analysis should be applied multidimensionally—
that is, in an approach that takes into account multiple trajectories
simultaneously. Based on methods pioneered in the field of bioin-
formatics, this paper proposes a method of multichannel sequence
analysis (MCSA) that simultaneously extends the usual optimal
matching analysis (OMA) to multiple life spheres. Using data
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from the Swiss household panel (SHP), we examine the types of
trajectories obtained using MCSA. We also consider a random
data set and find that MCSA offers an alternative to the sole use
of ex-post sum of distance matrices by locally aligning distinct life
trajectories simultaneously. Moreover, MCSA reduces the com-
plexity of the typologies it allows to produce, without making
them less informative. It is more robust to noise in the data, and it
provides more reliable alignments than two independent OMA.

1. INTRODUCTION

Most multivariate analyses using longitudinal data are based on hard
causal models in which one or several independent variables predict
the future actualization of some state of a dependent variable. Opti-
mal matching analysis (OMA) offers a more descriptive perspective,
that does not emphasize the causal priority of some variables over the
others but aims at elaborating a systemic view on the social phenom-
ena that develop over time. However, most applications of OMA have
been limited to one dimension at a time, a serious shortcoming for em-
pirical analyses. This paper develops a multichannel sequence analysis
(MCSA) which enables researchers to describe individual trajectories
on several dimensions simultaneously.

Various empirical studies (Elder 1985; Clausen 1986; Kohli 1986;
Levy 1991, 1996; Giele and Elder 1998; Heinz and Marshall 2003;
Mortimer and Shanahan 2003; Levy et al. 2005; Macmillan 2005) em-
phasize the multidimensionality of life trajectories based on social, psy-
chological, and biological factors that interact over time (Wetzler and
Ursano 1988; Spruijt and de Goede 1997; Repetti, Taylor, and Seeman
2002; Lesesne and Kennedy 2005). A major problem with research on
life trajectories, however, lies in the fact that the researcher is confronted
with a variety of unequally linked sequences unfolding at various speeds
(Abbott 1992). Life course studies therefore require the integration of
seemingly heterogeneous trajectories into a unique empirical model
(Levy et al. 2005), an ambitious task that even regression-based models
cannot accomplish (Esser 1996). In this perspective, Abbott (2001:151)
insists on using sequential data as multicase narratives to uncover pat-
terns of careers rather than looking for causal models.

Many social scientists have used OMA to model life trajectories.
Nevertheless, since its emergence in the social sciences, OMA has ne-
glected the multidimensionality of life trajectories. Social scientists have
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always lacked a standard approach for undertaking multidimensional
sequence analysis of life trajectories. To fill this gap, the present study
proposes multichannel sequences analysis (MCSA), a computational
approach that makes practical improvements to optimal matching al-
gorithms at two levels.1 First, it systematizes approaches for dealing
with multidimensionality using OMA. Second, it accounts simultane-
ously for local interdependencies among different social statuses present
at each point of the alignment process for all channels.2 Third, it offers
practical improvements toward visualizing parallel processes occurring
in various life spheres, a key element to describe and interpret sets of
individual trajectories (Tufte 1997; Müller et al. 2008; Piccarreta and
Lior 2010).

In this study, we first present the quantitative methods available
at the moment in the social sciences for dealing with the multidimen-
sionality of the life course and describe in detail how the method works.
To this end we also briefly present an example of substantive results
produced by MCSA using social science data. We then illustrate the
potential of MCSA by testing its validity and reliability using various
formal criteria. Finally, we use random data to compare several multi-
dimensional approaches using OMA.

2. QUANTITATIVE APPROACHES TO LIFE HISTORIES

There are a few methodological options for dealing with the multidi-
mensionality of life trajectories. The most often used is event history
analysis (EHA; Blossfeld and Rohwer 1995) and sequence analysis (SA;
e.g., Sankoff and Kruskal 1983; Abbott and Hrycak 1990), while some
attempts have been made with latent class methods (Macmillan and
Eliason 2003) and life history graphs (Butts and Pixley 2004).

The latter focuses on internal configurations of the life course to
reveal general sociological patterns. It uses a formal definition of life

1 The computations presented in this paper are encapsulated in the
program SALTT (Search Algorithm for Life Trajectories and Transitions), an
open-source freeware program written in C (Notredame, Bucher, Gauthier, and
Widmer 2005). The package and its documentation can be downloaded from:
http://www.tcoffee.org/saltt/. Recently, TraMineR, a package of the R software
environment, has allowed performing OMA and MCSA (Gabadinho et al. 2008).
Otherwise, computations are made using SAS (Sas Institute 2004).

2 By “channel,” we mean each sequence of statuses that constitute the
multidimensionality under study.
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history that applies social network analysis at an intrapersonal level.
Individual histories are expressed as structural relationships between
life spells, such as centrality, betweenness, or closeness (Wasserman
and Faust 1994). Life history graphs (LHG) take multidimensionality
into account, but they put little emphasis on time as it focuses on the
overlap of life spells for a given individual. The use of latent class meth-
ods (LCM) is based on transition probabilities. It allows identifying
subsamples characterized by typical (i.e., most probable) family and
occupational roles configurations over time. Unfortunately, method-
ological limitations make it difficult for LCM to consider more than a
few time points and to represent life courses at an individual level.

Event history analysis estimates time-to-event or risk functions
concerning, for instance, the occurrence of specific events, such as di-
vorce or entry into the labor market, that are then used as dependent
variables in different regression models (e.g., Kaplan-Meier or Cox).
EHA provides strong information at a population level. However, the
information concerning the unfolding of individual life history is lim-
ited to a dichotomous variable (the occurrence or not of a given event).
A major strength of these methods is to allow statistical testing of the
model, but they show limited sensitivity to temporality. Overall, LHG,
LCM, and EHA are insufficient to account for the multidimensionality
of life trajectories because they fail to “take a narrative approach to
social reality” (Abbott 2001:185). In contrast, sequence analysis tech-
niques and, more specifically, optimal matching analysis take the entire
sequences of statuses held by individuals over a given period of time
(e.g., family, occupational) as the analytical unit to find chronological
patterns of stability and change (George 1993). Thus, each individual
life course is modeled as a specific sequence of social statuses that may
be expressed as a specific character string.

For instance, the sequence aaaabbcccc may describe the family
trajectory of an individual over ten years (e.g., between the ages of
18 and 27), with a standing for living with both biological parents, b
for living alone, and c for living in a couple. Basically, OMA involves
making pairwise comparisons between individual sequences of statuses
to evaluate how similar they are.3 This is accomplished by counting
the minimal (weighted) number of elementary operations (known as

3 There are promising techniques for multiple sequence alignment,
whereby all sequences are simultaneously compared to all others, but these tech-
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“costs”) of insertion, deletion,4 and substitution that are necessary
to transform one sequence into another (Sankoff and Kruskal 1983;
Abbott and Hrycak 1990).5 For instance, in Figure 8, shown later in
this paper, one has to delete one m and then substitute two times n for m
in the sequence Ac = mmllm to transform it into Bc = nlln. Among all
possible ways to transform sequence Ac in sequence Bc, the one associ-
ated with the smallest cost is obtained through dynamic programming
(Needleman and Wunsch 1970) and is called the optimal distance be-
tween two sequences.6 The alignment of two life-as-sequences takes into
account both the relative position of specific statuses in each individual
trajectories and the process of their unfolding over time. Moreover, as
the modeling of the sequences is only limited by the number of time
points and that of possible characters, the possible individual variabil-
ity of sequence rapidly becomes huge. Thus, the distance computed by
OMA summarizes in an elegant manner the extent to which life courses
are similar. The smaller the distance between two life trajectories, the
more similar they are. Once all pairwise alignments are computed, the
researcher performs a cluster analysis on the resulting distance matrix
to reveal types of individual trajectories.7 Eventually, the typologies
stemming from the two latter steps may be used as categorical variables
in secondary analyses (cross-tabulations, regressions, and so forth).

We now turn to the more general issue of the extent to which
OMA can be systematically and straightforwardly applied to multidi-
mensional trajectories. Our goal is to evaluate the ability of OMA to
adequately model two main tenets of the life course paradigm. The
first one (the principle of linked lives) states that individuals participate

niques are poorly suited to large samples and divergent sequences (Claverie and
Notredame 2003).

4 Insertion and deletion are equivalent and are referred to as indel.
5 The question of costs necessary to align sequences is a central method-

ological debate in the use of OMA by social scientists (e.g., Abbott and Tsay 2000;
Levine 2000; Wu 2000). Recently, significant advances toward empirical, data-based
cost-setting offer objective means of defining the relationships between elements to
be compared (Gauthier et al. 2009; Aisenbrey and Fasang 2010).

6 For a closer description of the algorithm, see, for example, Kruskal
(1983).

7 The general principle of cluster analysis consists of grouping individ-
uals according to a systematic rule. In this paper, we use the hierarchical Ward’s
algorithm, which aims to minimize the intragroup and maximize the intergroup
variance of interindividual distances.
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simultaneously in various social spheres and that the corresponding
positions they hold in each are interdependent, as is the case between
family and occupational careers (e.g., Heinz 2003). The second tenet
(lifelong development) emphasizes the fact that the interdependence
of multiple social participation at an individual level may vary con-
tinuously over time (Elder et al. 2003). To develop a methodology that
corresponds to the two tenets, we investigate the options currently avail-
able and define the prerequisites for simultaneously modeling distinct
life sphere alignments, while also taking their interdependence into ac-
count.

3. OPTIMAL MATCHING ANALYSIS

Due to methodological or computational limitations, sequence analysis
in the social sciences has until recently focused mainly on (1) one-
dimensional social trajectories; (2) recoded statuses belonging to dif-
ferent social spheres prior to data processing; or (3) summed interindi-
vidual distances measured independently on distinct one-dimensional
trajectories. In doing this, measurement of the similarity between two
pairs of trajectories does not take full account of the possible interac-
tions that may occur at some points of these linked sequences during
the alignment process.

Three different strategies have been used in OMA to measure life
trajectories along several dimensions. The first consists of using typolo-
gies from one-dimensional analyses (e.g., occupational trajectories) as
response variables in a logistic regression model that includes indica-
tors of other trajectories (e.g., number of children) as predictor variables
(Widmer et al. 2003; Levy, Gauthier, and Widmer 2006). This approach
to a large extent disregards the longitudinal information provided by
the predictor variables.

A second strategy involves retrospectively combining the results
obtained from various independent OMA into distinct types of trajec-
tories (e.g., Han and Moen 1999). Since this approach sums interindi-
vidual distances from consecutive OMA, it is akin to cross-analyzing
typologies stemming from distinct one-dimensional analyses of the
same individuals. The main problem with such an approach is that it
does not accurately take into account the local or temporal interdepen-
dence of the trajectories under study, because the respective types they
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belong to are modeled independently of one another. Moreover, this
combination of typologies produced by cross-tabulating the categorical
variables stemming from one-dimensional OMA may lead to an overes-
timation of the number of relevant types, with many types being poorly
populated and therefore noninformative. In particular, the approach
suffers from a lack of parsimony and potential sensitivity to noisy data,
as we demonstrate below. Furthermore, as each dimension is analyzed
and clustered independently, it is impossible to use regular clustering
quality estimates to decide on the number of types present in the data
(Mojena 1977; Milligan and Cooper 1985, 1987). Moreover, the data in
each dimension may not be equally reliable or informative. While the
combination of alternative channels may compensate for this inequality,
the separate treatment of dimensions will lead to spurious alignments,
which may then result in the creation of artificial typologies.

A third and more interesting strategy is based on combining two
or more alphabets (e.g., Stovel, Savage, and Bearman 1996; Abbott and
Hrycak 1990; Blair-Loy 1999; Pollock 2007; Dijkstra and Taris 1995;8

Elzinga 2003). An alphabet is a collection of characters bijectively as-
sociated with an ensemble of distinct statuses, and characteristic of a
given life course dimension (e.g., family, occupational, residential).

For this purpose, an extended alphabet is generated by com-
bining individual alphabets associated with specific channels. There is,
however, a problem associated with this strategy: since it allows many
possibilities for estimating the substitution costs associated with the
extended alphabet, it becomes increasingly difficult to justify the choice
of a given cost scheme as the number of categories grows larger and
more heterogeneous.

Furthermore, depending on the number of channels, the ex-
tended alphabet becomes uncomfortably large (Han and Moen 1999).
Take, for instance, two channels with three statuses. Family statuses are
given a specific code for singlehood, marriage, or divorce/widowhood.
Occupational status is recorded as “at home,” “part-time,” or “full-
time.” In this scenario, there is no rationale for deciding a priori how
to set costs stemming from the combination of “at home”/“marriage”
versus “single”/“part-time or other statuses.” Moreover, each dimen-
sion’s local contribution to the overall interindividual distance, as well

8 These authors use a different algorithm from that of Needleman and
Wunsch (1970), on which many OMA are based.
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as the particular unfolding of each set of linked trajectories, remains
hidden or unknown.

4. MULTICHANNEL SEQUENCE ANALYSIS

The multidimensional approach we have developed is based on the as-
sumption that taking this local contribution into account differs from
using an extended alphabet, since each dimension differentially influ-
ences the final alignment. Therefore, a systematic approach is needed
in order to deal with these issues. We propose a multidimensional ap-
proach in which (1) the dimensions under study are used simultaneously
during the alignment process; (2) no enumeration of an extended alpha-
bet is needed; and (3) the combination of cost estimations is as explicit
as possible and is dealt with using a standard parameter. Given an al-
phabet containing a finite number of characters, take two sequences I
and J based on a finite number of characters belonging to the alphabet.9

Consider the costs associated with insertions and deletions (henceforth
called indel and abbreviated d), as well as with the substitution costs
given by a cost matrix C, where Csi s j is the cost for aligning Si, the
ith character of I against Sj, the jth character of J.10 In this paper, for
simplification purposes, we set a cost of one to all substitutions involv-
ing two different characters. The substitution of a character with itself
yields a cost of zero, and the costs associated with indel are set to the
half of that of a substitution.11 The optimal alignment score can then
be computed using the following recursion:

9 In practice, most algorithms are based on existing sets of characters,
as is, for instance, the English alphabet (26 characters) or the ASCII characters
table (127 characters that may be complemented with 128 extended ASCII codes).
Taking into account a greater number of characters is not a limitation per se but
may require some programming.

10 In the context of this paper, we consider that the matching of identical
characters yields a null score and that mismatches are associated with same sign,
nonzero, finite costs, although other cost schemes may be found, notably in biology
(Durbin et al. 2002).

11 We choose this option to simplify the exposition. Many other weighting
schemes for substitutions and/or insertion/deletion may be considered (Thompson
et al. 1994; Durbin et al. 2002; Widmer et al. 2003). We propose elsewhere a method
that estimates differentiated costs on an empirical basis (Gauthier et al. 2009)
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F(i, j ) = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F(i − 1, j − 1) + Csi s j

F(i − 1, j ) + d

F(i, j − 1) + d

. (1)

Each line in equation (1) defines a possible optimal match score
of two subsequences, whether it is less costly at this point to insert,
delete, or substitute characters to fully align the subsequences. For
instance, F(i − 1, j − 1) corresponds to the optimal match score of a
subsequence containing the 1 to i − 1 characters of sequence I against
a subsequence containing the symbols 1 to j − 1 in sequence J. As such,
this equation defines a recursion in which the score of any alignment
F(i, j) can be estimated by considering an optimal extension of the
three shorter alignments F(i − 1, j), F(i − 1, j − 1), and F(i, j −
1). Considering that each of these shorter alignments was already an
optimal matching of associated substrings, F(i, j) will also be optimal
(Durbin et al. 2002:20).12

We take the OMA concept a step further and extend it to the
use of different information sources associated with individual trajec-
tories. We name it multichannel sequence analysis (MCSA). In MCSA,
each individual is associated with two or more distinct channels, each
tapping a distinct life trajectory within a specific sphere (e.g., occupa-
tion, family, housing, location, health) by means of a specific alphabet.
Channels associated with a given individual are synchronized so that,
for example, the xth character of the family channel and the yth charac-
ter of the occupational channel correspond to the same year for a given
individual. For instance, given two individuals A and B, one can express
the MCSA example given in Figure 8 as two bidimensional sequences:

A = {(m, z), (m, t), (l, t), (l, t), (m, t)} and

B = {(n, y), (l, z), (l, z), (n, z)},

where each doublet in parentheses characterise the situation at a given
time point; the first and second positions in the doublet correspond to
the channels of family and occupational participation respectively. Once

12 Of course, this strategy relies on the assumption that each position is
independent and that the alignment scores are additive.
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defined for an individual, these doublets remain the same throughout
the alignment procedure. Optimal matching analysis is based on a recur-
sive algorithm that parses a pair of sequences from the first to the last
element in an array and then estimates an optimal score at each point
of the alignment (Sankoff and Kruskal 1983). A given optimal solution
for two substrings of the sequences Ac and Bc does not imply that the
optimal solution will be the same for any extension of these substrings.
The optimal distance is given only after the algorithm has been applied
to the entire sequences to be aligned.13 Therefore, our goal is to ana-
lyze multiple social participations while taking into account what each
pair of nested individual statuses contributes over time to the overall
similarity between two individual life courses. The method is general
in the sense that it can use as many channels as needed, with the only
condition being their synchronization.

In practice, taking into account synchronized channels within an
OMA framework, as defined by equation (1), is relatively straightfor-
ward and only requires adapting the substitution costs Csi s j and the indel
terms so that they reflect the relationship between equivalent channels.
The multichannel version of these terms can be expressed as follows:

Csi s j =

Nc∑
C=1

Cc
si s j

Nc
. (2)

While a single cost matrix is used to match two individual life
trajectories in standard OMA, our approach considers two or more
channels per individual and uses one cost matrix for each channel.
These cost matrices are standard and can be generated using any ap-
propriate strategy, such as unitary, knowledge-based, or data-based
(Gauthier et al. 2009;14 Aisenbrey and Fasang 2010). For instance, in
equation (2), a channel-specific cost matrix (Cc) is associated with each
channel. This matrix controls the cost of matching any character in the

13 For instance, using the cost schemes presented above, aligning Ac = {m}
with Bc = {l} implies either a substitution (mismatch) or two insertion/deletions,
whereas aligning Ac’ = {ml} – where Ac’ is equal to Ac plus character l – with Bc’
= {l} calls for an insertion/deletion followed by a match.

14 In this paper, we present an empirical method for defining substitution
costs using a data-based iterative procedure.
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channel in question with any counterpart character for another indi-
vidual. Formally, given two individuals A and B, each associated with
two channels c and d, Cc

si s j
will be the cost associated with matching

the ith character of channel c for individual A with the jth character
of channel c for individual B. Cd

si s j
will be the cost of matching the ith

character of channel d for individual A with the jth character of channel
d for individual B. Eventually, the contribution of channels c and d is
averaged to yield the final cost associated with the matching of posi-
tions i and j for the two individuals, where Nc stands for the number of
channels.15 Costs for the insertion/deletion (indel) of each channel are
averaged the same way. An alternative used below is to define indel as
the average off-diagonal value (AOD) of the corresponding substitution
matrix (Thompson et al. 1994). This procedure can be extended to any
number of channels. In the above example, as cost matrices are unitary,
matching the doublets (m, t) with (l, z) is more costly than matching (l,
t) with (l, z) as the latter doublets share a common character. Hence,
the optimal MCSA alignment presented in Figure 8 inserts a doublet of
indels in order to match the most similar doublets.16 Eventually, the raw
score of this bidimensional alignment is computed as 2 ∗ indels + 2 ∗
(mismatch/mismatch) + 2 ∗ (match/mismatch) = 2 ∗ 0.5 + 2 ∗ 2 + 2 ∗
1 = 7.

There are several ways to compute the distance from an optimal
pairwise alignment. We may use the raw score provided by the algo-
rithm,17 or the percentage of identity (PID) between the two sequences
(National Centre for Biotechnology Information 2004; May 2004). PID
corresponds to the number of aligned identical characters, divided by
the length of the longer sequence (see examples in Figure 8). It is an in-
teresting measure, as it is approximately normally distributed (Doolitle
1981) and gives a useful indication concerning the common structure
of two sequences (Raghava and Barton 2006).

15 To simplify the exposition, we have set the combination of the substi-
tution costs at one point of the aligned sequences at the average value of the two
substitution costs involved at this point. Future developments should implement
some alternative ways of dealing with the relationship between local scores.

16 Matching two doublets leads to either two matches, one match and one
mismatch, or two mismatches. Following the cost scheme used, the resulting costs
may be quite differentiated.

17 When the length of the sequences to align differ, the resulting distance
between them is normalized by dividing it through the length of the longer sequence.
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5. EMPIRICAL ILLUSTRATION

To test this method and illustrate its strength with an empirical example,
we use data from the Swiss Household Panel (Tillmann and Zimermann
2004). It includes in its third wave a retrospective questionnaire that asks
respondents to provide information on their educational, family, and
occupational status from birth to the year of the interview. Each change
in status is therefore associated with a starting date and an ending date.
Every year, occupational trajectories are coded using a seven-category
code scheme: full-time employment; part-time employment; positive
interruption such as a sabbatical or trip abroad; negative interruption,
such as unemployment or illness; full-time housework; retirement; and
full-time education.

A ten-category code scheme is used for family trajectories: living
with a biological father and mother; living with only one biological
parent, either mother or father; living with one biological parent and
her or his partner; living alone; living with a partner; living with a
partner and one’s own biological child; living with a partner and a
nonbiological child; living with one’s own biological child without a
partner; living with friends; other situations. A 12-category scale is used
to describe education-to-work trajectories.18 Given that individual life
trajectories require substantial time to differentiate from one another,
and to build sequences that are as complete and informative as possible,
we consider here only the individuals aged 45 and older who answered
the retrospective questionnaire (N = 2,212). As we further restrict our
sample to individuals whose trajectories contain less than 50% missing
data, our final data set contains 1,847 individuals (54% women, 46%
men) characterized by two sequences of statuses describing their family
and occupational lives from birth to age 45.19 Technically, MCSA may
be applied to any number of sequences, without restriction regarding
censored or incomplete data. However, from a sociological point of
view, it makes sense to compare life course sequences that have about

18 This scale is a combination of the seven categories of educational at-
tainment following the classification by the Swiss Federal Statistical Office, which
range from compulsory education to university degree, and five post-educational
occupational statuses (full-time, part-time, household, unemployment, other).

19 When comparing education-to-work trajectories, we use sequences
ranging from age 0 to 25, with 2,153 individuals aged 25 or older.
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the same size, which results here in the fact that the youngest cohorts
are not taken into account.20

Our choice for an empirical example on which to test MCSA
reflects the importance of debates about the influence of sociostruc-
tural factors on the divergent occupational and family trajectories
of women and men (Moen 1985; Höpflinger and Debrunner 1991;
Sheridan 1997; Levy, Gauthier, and Widmer 2006), as well as the avail-
ability of high-quality data on family and occupational status over
entire lives. We use one channel to describe occupational statuses and
another to model family trajectories over time. The interindividual dis-
tance matrix is computed by means of MCSA.21 We then run a cluster
analysis on that matrix using Ward’s hierarchical method to reveal co-
herent types of individual trajectories. We use stopping rules in order
to estimate the relevant number of clusters to retain (e.g., Milligan and
Cooper 1985; SAS Institute 2004).22 We eventually decide to keep three
clear-cut, bidimensional types of individual trajectories, in addition to
one residual category not presented here. Figures 1, 2, and 3 present
three contrasted illustrations of the visualization potentialities offered
by a multichannel approach to individual life courses—namely, simulta-
neous local analysis and parallel visualization of interdependent social
trajectories (e.g., see Tufte 1997).

The first bidimensional type of trajectories (Figure 1, 26% of
respondents) includes individuals that experience a quick transition to
parenthood. After a long stay with their two biological parents, they
live a few years alone or with a partner before entering a long and stable

20 More generally, we do not know the extent to which missing cases are
missing at random or not. As occurs frequently with survey data, we may expect
slight selection biases toward, for example, age, sex, occupation, or nationality (e.g.
see Groves et al. 2004).

21 We use a unitary substitution cost matrix for both channels; insertion
or deletion costs are set to half of one substitution cost.

22 We retain three criteria among those tested by Milligan and Cooper: (1)
pseudo F, which represents an approximation of the ratio between the intercluster
and intracluster variance of sequences and measures the separation between all
clusters at the current level; (2) Je(2)/Je(1) (Duda and Hart 1973), which may be
transformed into a pseudo T2, an index that measures the separation between the
two most recently joined clusters; and (3) R squared, that expresses the size of the
experimental effect. It is reasonable to look for consensus among the three criteria
(Nargundkar and Olzer 1998; SAS Institute 2004). In the present study, a given
cluster solution was retained for analysis only if at least one of these three criteria
supported its validity.
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FIGURE 1. “Parental and non–full-time employment” bidimensional trajectories (26%).

period of parental life in a nuclear family. The associated occupational
trajectories of the same individuals show a short period of full-time
work after completing education, followed by a long period out of
the job market or working part-time. Women are significantly over-
represented in this type, which we label “parental and non-full-time
employment” trajectories; indeed, 92% of individuals belonging to this
type are female.
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FIGURE 2. “Nonparental and full-time employment” bidimensional trajectories (24%).

The second type (Figure 2, 24% of the sample) brings together
people who experienced a long stay in a family of orientation com-
posed of two biological parents, followed by a relatively long period of
predominantly single living and/or childless conjugal life. The occu-
pational trajectories of this type consist nearly exclusively of full-time
activity. We name this nongendered type “nonparental and full-time
employment” trajectories. In contrast to the first type, the proportions
of men and women in this type are roughly equal.
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FIGURE 3. “Parental and full-time employment” bidimensional trajectories (30%).

The third type (Figure 3, 30% of the sample) comprises a large
majority of men (92%) who follow family trajectories similar to those
presented in Figure 1, and whose employment activity is stable and
full-time.

Further decomposition of the residual category (not presented
here) reveals interesting minority patterns, such as conjugal trajectories
associated with non–full-time occupational activities (7%, women over-
represented), or parental trajectories combined with long-term full-time
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paid work of individuals who experienced their own parents’ separation
during childhood (7%, no gender bias).

6. VALIDATION

In the following sections, which use the data from the Swiss Household
Panel, we test the extent to which MCSA produces more consistent
results than regular OMA according to three criteria: (1) parsimony
(reduces complexity), (2) reliability (takes advantage from channels in-
terdependence), and (3) robustness (resists noise and distortion).

6.1. Reduction of Complexity

Based on two distinct sequences of statuses for each individual in our
data sets, three distance matrices are produced. Two of them corre-
spond to one-dimensional analyses performed separately on family and
occupational trajectories, whereas the third stems from MCSA applied
simultaneously to both trajectories and corresponds to the empirical
example presented above.23 We then run a cluster analysis on these ma-
trices, using Ward’s hierarchical method (Wards 1963). The number of
clusters actually present in the data is estimated using the stopping rules
presented above. For both one-dimensional types of trajectory (family
and occupational), the presence of three or five clusters is supported in
the data. The same procedure suggests the presence of four clusters in
the distance matrix resulting from MCSA. If we cross-combine solu-
tions stemming from the one-dimensional sequence analysis to build ex
post multidimensional trajectories, we find typologies ranging from nine
to 25 types each,24 whereas an MCSA performed on the same data dras-
tically reduces complexity, as the stopping rules indicate the presence

23 For this exploratory analysis, to focus on the specific features of MCSA,
we use two unitary matrices of substitution, and the cost of insertion/deletion is
set to the half of that of substitution.

24 Cross-combinations of three or five types of family trajectories with
three or five types of occupational trajectories form, respectively, nine, 15, 15, and
25 distinct types of family-and-occupational trajectories.



18 GAUTHIER ET AL.

in the data of only four types of bidimensional trajectories.25 In the
following, we will not consider the respective semantic value of these
typologies but will focus instead on the extent to which this reduction
is associated with a loss of information.

To measure the ability of multichannel analysis to both reduce
complexity and preserve information, we cross-tabulate the four clus-
ters’ multidimensional typology stemming from MCSA with the cor-
responding cross-combinations of one-dimensional OMA described
above. The Goodman-Kruskal statistic is a measure of “proportion-
ate reduction in error” (PRE), which reflects the percentage by which
knowledge of the independent variable reduces errors in predicting the
dependent variable (Goodman and Kruskal 1979; Siegel and Castellan
1988; Olzak and Ritschard 1995; Confais, Grelet, and Le Guen 2005).
This statistic varies between 0 (absolute independence) and 1 (perfect
association). When lambda (R|C)26 has a value of 1, it means that each
row of the table has only one cell different from zero. To efficiently
reduce the complexity of a contingency table, we should capture the
maximum information available in the rows, with minimum overlap-
ping from one row to another in the same column, as schematically
presented in Figure 4.

This is exactly what we get from cross-tabulating MCSA with
the combined OMA—that is, many cells with no cases or very few
cases and many cells with high-column percentages and no cells in the
same column with comparably high scores.27 Table 1 shows the degree
of association (lambda and contingency coefficients) between family
and occupational types of trajectories computed either with MCSA
(four clusters) or cross-combined monochannel solutions (three or five
clusters, respectively).

The contingency coefficients in Table 1 show a strong as-
sociation between multichannel and cross-combined monochannel

25 The stopping rules reveal also a seven-types solution for the MCSA.
Its association with the cross-combined monochannels is very similar to the four
clusters solution.

26 This is called asymmetric lambda, which predicts the rows distribution
(R) under the condition that one knows the columns distribution (C).

27 Due to the size of the contingency tables used in the tests, we decided
to provide a schematic example of the situation (Figure 4) and to summarize the
results by only indicating the value of the lambdas and the contingency coefficients
(Table 1).
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Cross-Combined 
Monochannel Typologies 

MCSA Typology 

F1*O1 F1*O2 F1*O3 F2*O1 F2*O2 F2*O3 F3*O1 F3*O2 F3*O3

MCSA1 X  X       

MCSA2  X  (Y)      

MCSA3    (Y)  X   X 

MCSA4     X  X X  

X= most cases of a column are concentrated in a single cell;  
Y= important proportion of cases are distributed on more than one cell of the same column.  

FIGURE 4. Schematic representation of the association between cross-combination of family
(F) and occupational (O) monochannel typologies containing three types each
(respectively F1, F2, F3, O1, O2, O3) and MCSA typology containing four types
based on the same data.

solutions. The asymmetric lambda R|C is systematically higher than
the asymmetric lambda C|R, indicating that knowing the distribution
of combined monochannel solutions allows for better predictions of
the multichannel solution distribution. Put another way, MCSA effi-
ciently reduces the complexity of the data while conserving most of
the relevant information. More than 80% of the MCSA solution may
be predicted by the cross-combined one-dimensional OMA distribu-
tions, whereas the reduction in complexity (i.e., the difference between
the number of cells in the cross-combined and multichannel solutions,
divided by the number of cells in the cross-combined solution) is, re-
spectively, 56%, 73%, and 84%. The asymptotic standard error (ASE)
values are much lower than the lambda values. This means here that
the 95% confidence interval limits of the lambdas do not contain zero
(data not shown), suggesting that these results may be considered sta-
tistically significant (SAS technical support, private communication,
2006).

6.2. Interdependence

Starting from the results presented in Table 1, we now turn to the
extent by which statistical association between individual trajectories
unfolding in distinct social spheres influences the quality and relia-
bility of the MCSA features described above. We therefore first cross-
tabulate the categorical variables corresponding to the one-dimensional
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TABLE 1
Association Between Categorical Variables (Asymmetric Lambda) Corresponding

to Types of Trajectories Stemming from Either MCSA or Cross-Combined
One-Dimensional OMA

MCSA (4 clusters)
Cross-Combined
One-dimensional OMA Value ASE

Combination 1: 9 clusters Lambda C|R 0.4641 0.0132
Trajectories:

Family (3 clusters) ∗
Occupational (3 clusters)

Lambda R|C 0.7975 0.0118

Dimension of contingency
table 1: 9 ∗ 4 = 36

Contingency coefficient 0.8197

Combination 2: 15 clusters Lambda C|R 0.3436 0.0128
Trajectories:

Family (5 clusters) ∗
Occupational (3 clusters)

Lambda R|C 0.8237 0.0113

Dimension of contingency
table 2: 15 ∗ 4 = 60

Contingency coefficient 0.8237

Combination 3: 15 clusters Lambda C|R 0.3772 0.0128
Trajectories:

Family (3 clusters) ∗
Occupational (5 clusters)

Lambda R|C 0.8006 0.0117

Dimension of contingency
table 3: 15 ∗ 4 = 60

Contingency coefficient 0.8238

Combination 4: 25 clusters Lambda C|R 0.2659 0.0124
Trajectories:

Family (5 clusters) ∗
Occupational (5 clusters)

Lambda R|C 0.8463 0.0110

Dimension of contingency
table 4: 25 ∗ 4 = 100

Contingency coefficient 0.8320

ASE = Asymptotic standard error.

typologies of family trajectories with those of occupational trajectories
(Table 2).28

Table 2 shows that family and occupational types of trajecto-
ries have strong statistical association. The value of the likelihood
ratio chi-square is larger when the number of clusters is greater; the

28 According to our stopping rules, we consider for both trajectories a
three- and a five-type typology.
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TABLE 2
Association Between Categorical Variables (Likelihood Ratio Chi-square)

Corresponding to Types of Family and Occupational Trajectories Stemming from
One-dimensional OMA

Cross-Tabulated Types of Trajectories df LR χ 2 p Value

Family (3 types) ∗ Occupational (3 types) 4 27.5998 <.0001
Family (3 types) ∗ Occupational (5 types) 8 32.2821 <.0001
Family (5 types) ∗ Occupational (3 types) 8 28.1240 0.0005
Family (5 types) ∗ Occupational (5 types) 16 35.4739 0.0034

Family (3 types) = three types of family trajectories;
Occupational (5 types) = three types of occupational trajectories;

LR χ2 = likelihood ratio chi-square; df = degree of freedom. N = 1847.

significance level stays under the threshold of 0.01 but decreases slightly
as the number of types of trajectories increases. From this result we
hypothesize that the use of MCSA provides better results when the
types of one-dimensional trajectories are statistically associated. Two
life spheres are considered interdependent when the types stemming
from OMA performed independently on each of the corresponding
trajectories are associated.29 As mentioned earlier, it is the common
information implied by interdependence that allows MCSA to reduce
the complexity of multidimensional typologies by locally “deducing”
a channel’s missing or hidden information. Therefore, in order to test
this hypothesis, we focus on other multiple social participations over
time—namely, family and education-to-work trajectories. To differen-
tiate education-to-work from occupational trajectories, we limit the
period of observation from birth to age 25.30 One-dimensional OMA
performed on these trajectories along with usual stopping rules indicate
a two- or five-cluster solution for the first channel (family trajectories),
a three- or five-cluster solution for the second one (education-to-work
trajectories), and a four-cluster solution for the typology stemming from

29 Association is measured using the likelihood ratio of chi-square and
asymmetric lambda.

30 To support the comparison with the results presented in Table 2, we
measure the association between family and occupational trajectories over a 25-
year period and still find similarly high degrees of association. We conclude that
the absence of association between family and education-to-work trajectories is
therefore not due primarily to the length of the trajectories.
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TABLE 3
Association Between Categorical Variables (Likelihood Ratio Chi-square and

Asymmetric Lambda) Corresponding to Types of Family and Education-to-Work
Trajectories from Either MCSA or Cross-Combined One-Dimensional OMA

Likelihood Ratio Lambda
Cross-Tabulated Types of Trajectories Chi-square p Value R|C
Family (2 types) ∗ Educ-work(3 types) 2.7324 0.2551 0.0000
Family (2 types) ∗ Educ-work (5 types) 4.2019 0.3794 0.0000
Family (5 types) ∗ Educ-work (3 types) 5.8219 0.6672 0.0000
Family (5 types) ∗ Educ-work (5 types) 8.1966 0.9428 0.0000
MCSA (4 types) ∗ [Family (2) ∗

Educ-work (3)]
833.3803 <.0001 0.3257

MCSA (4 types) ∗ [Family (2) ∗
Educ-work (5)]

836.3845 <.0001 0.3257

MCSA (4 types) ∗ [Family (5) ∗
Educ-work (3)]

1669.0510 <.0001 0.4397

MCSA (4 types) ∗ [Family (5) ∗
Educ-work (5)]

1675.4887 <.0001 0.4397

Family = family trajectories; Educ-work = trajectories of the transition between
education and work; MCSA = multichannel sequence analysis of these trajectories. The
number of types considered is indicated in parentheses.

MCSA.31 Cross-tabulations of the categorical variables based on each
one-dimensional typology are also created (Table 3).

The results from Table 3 show that the categorical variables rep-
resenting these one-dimensional types of trajectories are not statisti-
cally associated with one another, whereas the MCSA based on family
and education-to-work sequences is logically and significantly corre-
lated with the cross-combination of these types. Lambda values in this
case, however, are much lower, in comparison to the results stemming
from the significantly correlated one-dimensional trajectories described
above. This means that the percentage reduction in error in predicting
the dependent variable given by MCSA in this case is two to four times
lower than it is when the lambda values are obtained with higher corre-
lated trajectories. These results confirm to a certain extent that MCSA
is more efficient at reducing data complexity when the considered

31 The stopping rules also suggest a six-cluster solution for the MCSA.
Its association with the cross-combined monochannels is quite similar to the four-
cluster solution.
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trajectories are interdependent—that is, when they share a certain
amount of information.

6.3. Resistance to Noise

The third test comparing MCSA and unidimensional OMA concerns
the ability of the two approaches to “resist” noise in the data. In other
words, we aim at testing the extent to which these procedures are able to
identify the same structure in the data when characters in sequences are
progressively and randomly replaced by characters that do not belong
to the alphabet building the original sequences. From our original data
set of family and occupational life trajectories which contain only valid
values, we generate 15 alternative data sets for each type of trajectory.
Each of these data sets contains a progressively greater proportion of
a randomly assigned unknown status compared to the original data
set (from 2% to 30%, in increments of 2%).32 The unknown status is
associated with the same unitary substitution cost as the other statuses.
The size of the sequences remains the same after the noising process.
We then run cluster analyses on each of the distance matrices produced
by MCSA and OMA for these data sets and then cross-tabulate the
typologies stemming from the original data set with those obtained us-
ing the increasingly noisy versions of that same data set. For a given
type of trajectory, the number of clusters is held constant and corre-
sponds to the types presented above (cf. Section 4.1.). The degree of
association between typologies (lambda coefficient) is computed for
each solution and plotted in Figure 5. It compares the ability of MCSA
and cross-combined OMA to identify the original data structure from
its degraded signal.

Figure 5 illustrates that the four-clusters multichannel typology
resists noise much better than do the other typologies. The lambda
values for the former remain stable at approximately 0.85, which indi-
cates a rather strong association with the original solution. For one-
dimensional types of trajectories, the lambda values decline rapidly and
show greater variation than the four-clusters multichannel solution.

32 The “noising” of the data is a random procedure that is made by SALTT
on each individual sequence.
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FIGURE 5. Value of asymmetric lambda, by increasing amount of missing values on eight
types of trajectories.

As the noising of the data occurs before the clustering procedure,
each noise level considered on the abscissa of Figure 5 will produce a
specific cluster solution. This may explain the substantial variation
from one noise level to another that is visible in Figure 5, and the peak
lambda value in Figure 6 for the three-cluster solution. In the latter
case, the noisy sequences lead to a splitting of the two-cluster solutions,
which is not the case when clustering the original sequences that serve
as references for both graphs.

To focus specifically on the behavior of MCSA regarding noised
data, we compute the values of the asymmetric lambda for the two to
25 clusters solutions of the original multichannel trajectories for three
levels of noise in the same data (10%, 20%, and 30%) and plot them in
Figure 6.

Figure 6 shows that noise resistance is weakened by the increas-
ing number of clusters and by the level of noise in the sequences. It
appears, however, that more noise is systematically associated with a
weaker lambda for any given cluster solution. We must also address
the extent to which the resistance to noise of a given cluster solution
suggests the reliability of that solution. For instance, to what extent
can we use such a result to select one cluster solution over another?
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FIGURE 6. Asymmetric lambda value between a given multichannel cluster solution and its
corresponding noised solutions (10%, 20%, and 30% missing)

The best solution is also the one that is more resistant to internal vari-
ations, which suggests a more stable and informative data structure.
Comparing the 25-cluster solutions for the typologies based on MCSA
(Figure 6) and one-dimensional OMA (Figure 5) shows that the noisy
multichannel solution predicts the original solution better than does
the combination of one-dimensional OMA, although this difference is
small at a noise level of 10%.

6.4. Minimizing the Distortion of Alignments

Considering two distinct dimensions of the individual life course, we use
the length variation resulting from pairwise alignment as an indicator
of distortion. Minimizing this variation is of special interest because
each position in a sequence represents a year of life, which corresponds
to a specific age. Given the fact that some statuses and some transi-
tions are more common at certain ages than at others, alignments with
greater length variation bias the actual relations between age and social
statuses. For instance, Figure 8 exemplifies how MCSA contributes to
limiting distortions, since the optimal alignment of Channel d results in
a length of six; whereas when both channels are aligned simultaneously
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Position:  0123456789 

seq1 aligned: A-BBBBA-CA (seq1 original: ABBBBACA) 

seq2 aligned: AABBB-AB-A (seq2 original: AABBBABA) 

FIGURE 7. Measuring the distortion resulting from a pairwise alignment.

(MCSA), the length of the final alignment is five for both dimensions.
In this way, MCSA keeps the chronological order of both trajectories
as close to the original as possible without using indels, which allows
for a better structural conservation of sequences than do systematic
substitutions. The distortion due to an alignment is defined as the sum
of the products of the number of character(s) shifted, multiplied by the
size of the shift (time units), and divided by the total, number of aligned
character pairs. This is a standardized measure that may be used to
align sequences of different lengths, although the ones used here are
of equal lengths. Figure 7 gives an example of distortion measurement
resulting from a pairwise alignment. Considering the aligned sequence
seq1, the three characters ‘B’ from the original sequence seq1 (positions
2–4) and character ‘C’ (position 8) are shifted by one position (time
unit) to the right. In this case, there are six aligned character pairs in
the alignment. The value of the distortion resulting from the pairwise
alignment of seq1 and seq2 is 0.66 [((3 ∗ 1) + (1 ∗ 1)) / 6 = 4/6 =
0.666].

Our aim is to test whether MCSA provides less distorted align-
ments than one-dimensional OMA does. Therefore, using SHP data,
we compare the age distortion stemming from two separate monochan-
nel alignment procedures for each individual—one for family and the
other for occupational trajectories—with age distortion computed us-
ing MCSA based on the same trajectories.

From three data sets containing 1,847 family, occupational,
and multidimensional trajectories, we obtain 1,704,781 possible align-
ments for each of them.33 A distortion score is computed for each
alignment. To compare the alignments produced by cross-combined
one-dimensional OMA and MCSA, we subtract for each individual
the largest distortion score stemming from either one-dimensional

33 Number of alignments = N ∗ (N-1)/2 = 1847 ∗ 1846/2 = 1’704’781
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TABLE 4
Difference in Distortion Between Multichannel (Reference) and Family,

Occupational as well as Max(Family, Occupational) Pairwise Alignments

Sequences Aligned Family Occupational Max(fam., occup.)

Multichannel is better (−) 28% 26% 48%
No difference (0) 44% 50% 46%
Multichannel is worse (+) 28% 24% 6%

Total 100% 100% 100%
N = 1’704’781 N = 1’704’781 N = 1’704’781

Max(fam., occup.) = larger distortion resulting from the alignment of a pair of
either family or occupational trajectories for the same individual.

alignments to that produced by MCSA.34 A resulting negative value
indicates that the distortion stemming from MCSA is smaller than that
resulting from one-dimensional alignments. Table 4 shows the distor-
tion differences between MCSA (reference) and one-dimensional OMA
based on family and occupational trajectories. For each individual, we
also consider the larger distortion produced by either alignment.

Table 4 shows that in the majority of cases, MCSA provides
less or equally distorted alignments than does regular one-dimensional
OMA. Since MCSA represents a combination of two alignments, it
would be understandable if MCSA produces more distorted alignments
than one-dimensional OMA. Actually, MCSA clearly produces bet-
ter results than the one-dimensional OMA performed on the channel
associated with the most distorted alignments. MCSA generates less
distorted alignments in approximately 50% of cases. Distortion from
MCSA is greater than that from one-dimensional OMA in only 6%
of alignments. In other words, MCSA’s distortions are almost always
smaller than, or equal to, those of two one-dimensional OMA applied
separately. By reducing sequences’ distortion in the alignment process,
MCSA offers a better conservation of structural and temporal patterns
(Lesnard and Saint Pol 2004).

Table 5 presents the paired t-test values for these compar-
isons and shows that MCSA significantly reduces the structural and

34 Comparison of individual distortion scores equals distortion score mea-
sured on MCSA (the largest distortion score measured on the alignment of either
family or occupational trajectories).
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TABLE 5
Paired t-Test on Distortion’s Value Resulting from Either MCSA or

One-dimensional OMA

Mean Standard Deviation t-Test Value p

Family—MCSA 0.2911 2.4628 154.33 <.0001
Occupational—MCSA 0.1659 1.7331 124.98 <.0001
Max (fam., occup.)—MCSA 1.0948 2.4066 594.00 <.0001

N = 1’704’781.

temporal distortion of aligned sequences (p < 0.0001). This reduction
is greatest when comparing MCSA to regular OMA performed on se-
quences that produce the greatest distortions. Despite the large number
of cases, which improves performance in significance tests, the rela-
tively high standard deviations indicate substantial variability in the
data. Moreover, non-paired t-tests on the same data (not shown in
Table 5) indicate that MCSA produces significantly smaller standard
deviations than does one-dimensional OMA (p < 0.0001).

7. FURTHER VALIDATION ON RANDOM DATA

Having already shown the favorable properties of MCSA compared to
regular OMA performed on existing social science data, this section
aims at assessing the extent to which MCSA also provides qualitatively
similar results when used on random data. To compare various multidi-
mensional approaches using OMA, we use two simulated data sets (N =
2001 pairs of sequences), each corresponding to a specific channel. In
this simulated data, the alphabet and length of sequences are kept con-
stant. In each data set, the first sequence has a length of five characters
and the second a length of four. The alphabets of the first and the sec-
ond channel contain three and four characters, respectively (cf. Figure
8).35 We first use the simulated data to evaluate whether different ap-
proaches to multidimensional sequence analysis produce similar results.
We compare four ways of computing multidimensionality: ex-post sum
of the distance matrices produced by two independent OMA, MCSA,

35 To create the sequences, we use the Perl’s function rand(), which pro-
duces uniformly distributed pseudo-random numbers (Wall et al. 2000).
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and two ex-ante recoding of both channels into one unique channel
(called “extended 1 and 2” in Figure 8). For aligning pairs of sequences
(nested or separately), we use unitary substitution costs matrices.36 For
the extended alphabet, we consider the fact that, when comparing two
characters of the recoded sequences, the cost may be one unit if both
recoded characters have a character in common. The cost is set to two
units if they have no characters in common.37 The cost is zero when both
pairs of characters are identical for two given individuals. In the first
case, the value of indel is set to the average off-diagonal value (AOD) of
the substitution cost matrix, while in the second case, indel is set to half
of this value38 (see Figure 8). We compare these different approaches
using the degree of similarity between all pairs of sequences, which is
given by either the raw score of the alignment or the PID.

Using the simulated data sets and the cost schemes described
above, we compute linear coefficient correlations among alignment
scores stemming from different ways of assessing the distance between
multidimensional sequences, as shown in Table 6, where the distances
produced using either extended alphabets, ex-post sum of monochan-
nel distances, or MCSA are strongly associated, although not identical.
According to the two latter methods, the use of either percent identity
or raw score produces the same correlations with the other measures of
multidimensional distances. Since it otherwise brings the most differ-
entiated correlations, we retain PID to estimate the distance between
sequences (May 2004). The five measures of multidimensional distances
between individual trajectories are all based on some linear function of
one-dimensional OMA distances. They differ essentially in the tim-
ing of the contribution of each channel—that is, either before, during,
or after the alignment process. As one can read from Table 6, results
produced by MCSA appear here as a representative denominator to the
other measures. This means that they are at the same time as variable

36 This means that substituting any character with another one has a cost
of 1, whereas substituting a character with itself has a cost of 0.

37 For instance, if “recoded f ” stands for “m” and “z” at the same position
in channels 1 and 2, “recoded j” stands for “m” and “t,” and recoded “g” for “n”
and “z,” the cost of substituting “f ” and “j” is two-fold lower than the cost of
substituting “j” and “g.”

38 At this point, we did not consider the differentiation between gap open-
ing penalty (GOP) and gap extension penalty (GEP; Thompson et al. 1994), or
between internal and external gaps.
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FIGURE 8. Comparing MCSA to summing two distance matrices or using extended alphabet
(random data sets).

as the five others but less sensitive to the computation options, which is
a first indication toward its robustness.

8. DISCUSSION

This paper explores two key points regarding the methodological poten-
tial of multichannel sequence analysis (MCSA). First, MCSA offers an
overall advantage over conventional OMA, since it allows for the simul-
taneous analysis of multiple social trajectories without prior recoding
of the data. MCSA produces an extended alphabet that corresponds
to the combination of two or more alphabets defining different types
of sequences used in the analysis. The main advantage of MCSA over
other extended alphabet methods (Dijkstra and Taris 1995; Stovel et al.
1996) is that it avoids defining, coding, and weighting all combinations
prior to the analysis, and it therefore allows for the use of weight-
ing strategies specific to each dimension (family, occupation, and so
forth) considered separately, such as the data-based training procedure
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(Gauthier et al. 2009). Keeping the specific codification of each tra-
jectory distinct allows for better interpretation of MCSA’s typologies,
since nested trajectories are represented as parallel processes associated
with substitution matrices that are in themselves informative.

Applied to social science data from the Swiss household panel,
the illustrative application of MCSA shows that it produces more con-
vincing results than does independent OMA. Moreover, it provides
semantically and graphically straightforward patterns of the ways mul-
tidimensional social participations unfold over time, a feature that rep-
resents one of the central developing fields of sequence analysis.

Second, our results on the same data show that MCSA performs
best when the dimensions under study are interdependent. Compar-
ing the analysis of correlated versus uncorrelated monochannels, we
find that MCSA leads to a greater reduction of complexity when the
trajectories are statistically associated and when the number of clus-
ters is relatively small. This outcome provides a first indication toward
MCSA’s range of applications: It is precisely when nested trajectories
are interdependent—that is, when they share information—that MCSA
is required. Additionally, the results show the ability of MCSA to sim-
plify the outputs obtained from regular OMA. This simplification is
achieved by dramatically reducing the number of categories involved,
while retaining a high proportion of the original information. This
means that considering interdependence increases the complexity of
nested trajectories under study, but at the same time it reduces the
number of relevant combinations, compared to cross-combining results
from independent one-dimensional OMA.

We also test the resistance of MCSA to noisy data. It appears
that MCSA is less sensitive to increasing noise in the data than are
combinations of regular one-dimensional OMA. MCSA uses the in-
terdependence that exists between nested trajectories as an additional
source of information to identify relevant multidimensional patterns,
even when some of the data are missing.

This paper also examines the issue of sequence distortion pro-
duced by the use of insertions and deletions that change sequence length.
Carrying out an alignment modifies the correspondence between actual
age and the position in the sequence prior to alignment. In measuring
the distortion resulting from MCSA and conventional OMA, we find
that MCSA was nearly always superior or equivalent to conventional
OMA in minimizing this distortion; that is, MCSA performed better



MULTICHANNEL SEQUENCE ANALYSIS 33

by keeping the length of aligned sequences as close as possible to that
of the original sequences. We demonstrated the ability of MCSA to
produce less distorted alignments and take the timing of episodes more
accurately into account than combinations of conventional OMA. This
feature is particularly important when considering not only relative du-
ration but also dimensions such as social age, which take into account
the fact that some social statuses or transitions are more common at
certain points in life than at others. In other words, MCSA produces
alignments that optimize the relationship between age and social sta-
tuses over time.

Finally, using random data, we demonstrate that distances pro-
duced by MCSA differ from those produced by either summing pairwise
distances in independent OMA or by recoding the data prior to analysis.
Furthermore, MCSA yields the strongest correlations with the results of
alternative measures of multidimensional distances. It therefore appears
to be the most representative technique among those that we examined.

Given the number of dimensions that may play a role in the
variability of results obtained through either method, this paper pro-
vides initial guidance on the potential advantages of MCSA. Further
developments of the method, along with in-depth testing, are needed to
continue improving MCSA. Our main expectation regarding MCSA is
to significantly reduce the “signal differences” between channels when
channels are related. It is precisely the correlation between channels
that allows the alignment procedure to benefit from the information
contained in one sequence but not another, and ultimately to produce
multichannel alignments that reduce the complexity, distortion, and
loss of signal due to such noise or to missing values. This informational
asymmetry between channels may vary over time (i.e., it is position-
specific), and it may depend on specific stages of the life course or on
specific features of social age. In some stages, for instance, occupational
status is poorly or not at all informative (e.g., during school years). In
such cases, information from the other channel(s) should be given pref-
erence. In other words, if one channel is more informative than another
at a given point in the sequence, we should rely more heavily on the
more informative channel to compute the multichannel alignment. In
the same way, if there are missing values on one channel, we should
“let the other channel talk” by giving it more weight. Future develop-
ments should implement heuristic procedures to systematize methods
for dealing with such information asymmetries between channels. In
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this paper, we have set the combination of substitution costs at one
point to the average value of the two substitution costs involved at that
point. An alternative would be to follow some weighting scheme based
in theory (e.g., costs set to the highest or the lowest value), or to rely on
empirically determined costs of substitution.

Overall, MCSA presents two main advantages over one-
dimensional OMA. It allows both for the discovery of regularities
within multidimensional trajectories and for the reduction of the effects
of noise, whether due to missing data, poorly recorded information, or
heterogeneous information content.

APPENDIX

The computations presented in this paper are encapsulated in the
program SALTT (Search Algorithm for Life Trajectories and Tran-
sitions), an open source freeware written in C (Notredame, Bucher,
Gauthier, and Widmer 2005). It can be compiled and installed
on any UNIX-like platform including Linux, Cygwin, and Ma-
cOSX. The package and its documentation can be downloaded from:
http://www.tcoffee.org/saltt/.
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