Computing Multiple Sequence/Structure Alignments
with
The T-Coffee Package

Cedric Notredame*+, Karsten Suhre+

+Information Genetique et Structurale,

CNRS

31, Chemin Joseph Aiguier
13 402 Marseille Cedex 20

France

*Corresponding Author

Swiss Institute of Bioinformatics

Chemin des Boveresse, 155

1066 Epalinges,

Switzerland

Cédric.notredame@europe.com

I- Introduction

In this unit we show how to assemble a multiple sequence alignment using the T-Coffee multiple sequence alignment package (1). Although T-Coffee is slower than its close relative ClustalW (2), it is better suited for aligning distantly related sequences or mixing sequences and structures. T-Coffee is also much more flexible than most methods because it makes it possible to combine many alternative alignments into a single one, based on an estimate of consistency between these alignments. This unit shows how such a combination can be done and how alternative alignment methods can be added as separate modules to the T-Coffee process.

In this Unit we assume that the user wants to align a set of sequences that are more or less homologous over their entire length. These sequences may have been gathered using any appropriate database search strategy. Given such a dataset, the user can assemble a multiple alignment in order to carry out family modeling (profile), do structural modeling or phyologenetic modeling (tree computation). This multiple sequence alignment may also be used in order to analyze the potential effect of nsSNPs (Non Synonymous Single Nucleotide Polymorphisms) or simply to check whether a specific sequence is a true member of the family.
In most of this Unit, we assume that the user is familiar with the UNIX environment (without being a specialist or a programmer). The last section is a bit more demanding in terms of computer skills, but it should be relatively straightforward to anyone who has a basic knowledge of the scripting language Perl.

T-Coffee is very appropriate for generating high quality alignments, but it is more demanding in terms of resources than other similar programs. Given a standard 2 Ghz PC with 500 Mega-bytes of memory, one should not hope to align more than 100 sequences up to 2000 residues long when using the default mode. This figure is simply an indication since the memory requirement depends on the relatedness of the sequences being considered (close sequences require less time and less memory). Given these limitations, it is often a good strategy to start using a rapid multiple sequence alignment method (such as ClustalW) in order to quickly identify potential problems within the dataset, before refining the results with T-Coffee. Nonetheless, we give in this Unit two alternative strategies that make it possible to bypass some of the limitations of T-Coffee regarding memory usage.

In this Unit we present protocols and tutorials on how to use T-Coffee in a UNIX/Linux environment, taking advantage of the rich command line options of this program. Yet, for those who prefer click-able Web-interfaces, a large part of the protocols presented here can also be executed by using the Web-tool Tcoffee@igs (3), available at igs-server.cnrs-mrs.fr/Tcoffee/. This service is provided to the community by the CNRS and HP computers. Other online versions of this software exist and an exhaustive list is maintained on the T-Coffee home page (accessible from the Tcoffee@igs server).
II-Basic Protocol 1: Computing Multiple Sequence Alignments

A. Introduction

This basic protocol is meant to show a user how to run the T-Coffee package in the simplest possible manner. In this protocol, one will find out how to align a set of sequences, how to control the output of T-Coffee, how to evaluate the resulting multiple alignment and how to align a single sequence to an already existing alignment (sequence to profile alignment).

T-Coffee is a non-interactive program and thus does not prompt the user for any input (as Clustal does for instance). After installation of the package on a personal computer (preferably on a Unix or Linux system, following the installation instructions delivered with the package) the user can access the T-Coffee functionalities by typing a complete set of instruction on the command line, from a terminal window. In its simplest form, the syntax is straightforward and resembles very much ClustalW. This makes it possible to recycle most of the scripts based on ClustalW. The default parameters are set to default values tuned to produce a meaningful result in the most common situations. At this level, the use of T-Coffee does not require an in-depth understanding of the underlying algorithm. Yet, those interested in behind-the-scene details can find an exhaustive description of the T-Coffee algorithm in the original publication (1) and in the associated online documentation.
In this basic protocol, we assume that the user already has at his disposal a set of homologous sequences. These sequences may have been obtained using any adequate database search strategy. Given these sequences, we assume that the user intends to produce a multiple sequence alignment.

B. Necessary Resources

1. Hardware

T-Coffee has been especially designed to run on Unix and Linux platforms. The program is distributed as C source code and Perl scripts. It needs to be compiled. Experience shows that it is easy to install on a wide range of platforms (Irix, Sun, HP…) by following the simple three-steps procedure provided in the documentation. For Windows and Macintosh users, pre-compiled binaries are available from the authors, although these platforms are not officially supported.

A multi-threaded version of T-Coffee, that can take advantage of multi-processor machines, is under development but is not yet available. This means that one does not get much benefit out of running the program on a multi-processor machine. Linux farms are not very useful either if one wishes to increase the size of the data set that T-Coffee can handle. Given the choice, users should prefer well-endowed single processor machines.

2. Software

Environment and compilation: For the purpose of this tutorial, we expect the user to have access to a common Unix/Linux environment. Standard programs, such as wget (designed for automated download of Web-pages) should also be installed. For the compilation of the package a C compiler is required. The best cross-platform reproducibility of the results is assured using the Gnu C Compiler gcc. Gcc is freely available (www.gnu.org) and is the default C compiler on most Linux distributions.

T-Coffee Package: The T-Coffee package and its source code can be downloaded from: igs-server.cnrs-mrs.fr/Tcoffee/. Read the license before installation. This package is free of charge for academic and other non-profit users provided that they agree not to redistribute or modify the code. Commercial users are required to take a special license when using versions higher than 1.37. The web server Tcoffee@igs is freely accessible for all academic and commercial users.

ClustalW Package: For the purpose of this tutorial, the user also needs to have access to the ClustalW multiple sequence alignment package (ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/)
3. Data Files
T-Coffee is able to read and write the most common file formats. Sequences may be provided using the FASTA, the MSF or the ALN sequence format, and an output can be produced in any of these formats. By default, the nature of the files that T-Coffee outputs is the same as that of ClustalW, including similar file extensions (.aln, .dnd).

Recognition of the file format is carried out automatically by T-Coffee. Note that file extensions (.pep, .fasta…) are not used, so that the user is free to use any file extension he chooses.

C. Computing a Multiple Sequence Alignment

1. Type the command

t_coffee sample4.pep

Given a set of sequences, computing a multiple sequence alignment with T-Coffee is a one step procedure that involves providing the program with the proper command line. The previous example shows the simple mean of computing a multiple alignment. Yet, if the data is spread over several files, one can also use T-Coffee to compile a unified dataset before making the alignment:

t_coffee sample1.pep sample2.pep Ssample4.aln

In this example, sample1.pep and sample2.pep are sequences in Fasta format, while sample4.aln is a multiple sequence alignment in Aln format (the default output format of ClustalW).
When computing the multiple alignment, T-Coffee considers the sequences in the file sample4.aln as a collection of unaligned Sequence. The program is instructed to do so by the means of the letter "S" that precedes the file name: Ssample4.aln. This way, the gaps within sample4.aln are reset and this pre-computed alignment has no influence on the final T-Coffee alignment. S is named a converter in the T-Coffee jargon. Several converters exist in T-Coffee and their effect is summarized in Table 1 and 2, and detailed in section V.D of this unit.
When combining several sets of sequences from different files, one should remember the following points:
1. T-Coffee pulls together the sequences coming from your various sets and turns them into a single unified set without duplicates (i.e. a set of sequences that does not contain two sequences with the same name but that can contain identical sequences with different names).
2.None of the individual files should contain a duplicated sequence (this makes T-Coffee datasets compliant with those of ClustalW).
3-When two sequences in two different files have the same name they are assumed to be the same sequence, but if these sequences are not entirely identical; T-Coffee attempts to combine the information they contain into a new reconciliated sequence (c.f. section V.C).
As it happens with most multiple sequence alignment procedures, the incoming order of the sequences can have a slight (albeit usually modest) influence on the final alignment.

2. Examine the output

When the computation of the multiple sequence alignment is finished, T-Coffee outputs the two following files (Figure 1):

sample1.dnd

sample1.aln

The file sample1.dnd is the guide tree that T-Coffee has constructed and used to build its progressive alignment. This guide tree is in Newick format. It is NOT a phylogenetic tree and should NEVER be used as such. The file sample1.aln is the multiple alignment. It comes in format similar to the one of ClustalW, so that most programs that parse ClustalW files should not have difficulties recognizing the ones from T-Coffee. In this file, perfectly conserved positions are indicated with a "*", highly conserved ones with a semicolon ":" and partly degenerated with a ".".

D. Controlling the Output Format

3. Use a command with the -output flag

The -output flag can be used when it is necessary to output a format other than the default. For instance, assuming that the user wishes T-Coffee to align the sequences in sample4.pep and requires output of the multiple alignment in three different formats: Fasta, Msf and Aln, he may use the following command:

t_coffee
sample4.pep

-output=clustalw,msf_aln,fasta_aln,fasta_seq

4. Examine the output

T-Coffee outputs the following five files (Figure 2)

sample1.dnd

sample1.aln

sample1.msf_aln

sample1.fasta_aln

sample1.fasta_seq

Table 1 lists some of the output/input formats available in T-Coffee. Multiple alignments come in two different types of formats: interleaved (Aln or Msf) and non-interleaved (like Fasta or Pir). If some of the residues in the input sequences have been uppercased/lowercased, the user needs to use a format that preserves this casing, such as pir_aln (non interleaved), fasta_aln (non_interleaved) or t_coffee_aln, an interleaved format very similar to the ClustalW Aln format.

5. Rerun the computation with different output filenames
In order to avoid overwriting pre-existing files, the user can change the prefix of the output files. By default, T-Coffee uses the prefix of the first data-file that appears on the command line (sample4 in this case), but the user can alter this behavior using the -run_name flag:

t_coffee sample4.pep

-output=clustalw,msf_aln,fasta_aln

-run_name=yourprefix

6. Examine the output

Given this command line, T-Coffee generates the following four files, where the prefix takes the value specified via the -run_name flag.

yourprefix.dnd

yourprefix.aln

yourprefix.msf_aln

yourprefix.fasta.aln

E. Accelerating T-Coffee
7.Change the alignment mode

In contrast with ClustalW, T-Coffee does not depend heavily on alignment parameters such as substitution matrix, gap opening and extension penalties. The reason is that T-Coffee assembles its alignment using other methods whose parameters are set by default. Therefore, the best way to tune T-Coffee is to tune the constituting methods or to modify the cocktail of methods used by T-Coffee. Doing so is an advanced procedure described in section IX of this unit.
Users should also note that although the -matrix, -gapopen and -gapext flags are available, their effect is very different from what one would obtain using ClustalW. For instance, the following command:
t_coffee sample4.pep -matrix=pam250mt -gapopopen=10 -gapext=1

causes T-Coffee to replaces its original algorithm with a simpler progressive algorithm similar to the one in Clustal V or Pileup. When used this way, T-Coffee runs faster but is much less accurate. The -matrix flag is responsible for this change of behavior. Under this protocol, the T-Coffee library is replaced with a standard substitution matrix. This makes it unsuitable for sequences that share less than 50% identity.
If -gapopen and -gapext are omitted, the program uses appropriate default values.

F. Optimizing Memory Usage

8. Parameterize T-Coffee for saving memory

In its default mode, T-Coffee does a few trade-offs between speed and memory usage. If memory is the limiting factor in a project, the user can switch off time saving parameters, using the following command line.
t_coffee sample1.aln

-in=Mlalign_id_pair,Mslow_pair

-dp_mode=myers_miller_pair_wise

-tree_mode=slow

These parameters specify the most memory efficient mode for T-Coffee. The -in flag introduces the parameters for the compilation of the T-Coffee library, while the -dp_mode indicates the algorithm that T-Coffee uses for assembling its alignment. -tree_mode=slow indicates that the pairwise distance one needs to compute the tree are measured on pairwise alignments produced with the -dp_mode algorithm.
With these parameters T-Coffee requires an amount of memory that is roughly O(N2L), N being the Number of sequences and L their length. This means that in this mode, T-Coffee needs an amount of memory that increases proportionally with the length of the sequences, and proportionally with the square of the number of sequences. If this strategy fails, two alternatives remain:
1-Decrease the dataset size (remove sequences)
2-Split your dataset in smaller subsets and use the support protocol described in the next section.
III-Support Protocol 1: Aligning Large Datasets

A-Splitting a Dataset into Smaller Datasets

1. Make a fast alignment using ClustalW or T-Coffee

t_coffee sample4.pep -matrix pam250mt

2. Use the .dnd file to split your dataset

User can run Jalview (www.es.embnet.org) to visualize the tree associated to a multiple sequence alignment (Figure 3). They can divide their dataset into smaller ones using this information. In the current example, we did split sample4.pep into the three datasets sample1.pep (two sequences), sample2.pep (two sequences) and sample3.pep (one sequence). In real life, these files would of course contain many more sequences.
B-Making the Individual Sub-multiple Alignments

3. Make default T-Coffee alignments

t_coffee sample1.pep

t_coffee sample2.pep

C-Making a Sequence to Profile Alignment

4. Run the profile alignment command line

t_coffee
sample3.pep

-profile=sample1.aln,sample2.aln

T-Coffee can align one or more sequence(s) to one or more pre-existing multiple sequence alignment(s). When T-Coffee is used this way, the input multiple alignments (sample1.aln, sample2.aln) are not recomputed but rather treated as simple sequences and aligned to one another.

Up to 200 multiple alignments can be provided with the -profile option. In the current implementation, T-Coffee turns every profile into a consensus sequence, treats these consensus sequences as ordinary sequences and aligns them using the standard procedure. Once the alignment is finished, the program threads the original multiple sequence alignment onto the aligned consensus sequences. Replacing a multiple alignment with its consensus requires a high level of similarity within this alignment (50% average identity or more) so that it yields a meaningful consensus. This strategy makes it possible to mix sequences and profiles in any proportion one may be interested in. For consistency with ClustalW, T-Coffee also supports the -profile1 and -profile2 flags of ClustalW

Work is presently underway so that T-Coffee can make genuine profile-to-profile comparison rather than the consensus-based. This future version of T-Coffee should also provide an automated procedure for the pre-alignment clustering step.

IV-Support Protocol 2: Evaluating the local score of an alignment

Assessing the biological relevance of a multiple sequence alignment is an important and difficult question. Unfortunately, E-values and other statistical means of evaluation are not yet as developed for multiple sequence alignments as they are for pairwise local alignment analysis. As a consequence, the estimation of the biological quality of an alignment still relies heavily on visual interpretation. This interpretation is mostly a matter of identifying well conserved blocks and meaningful patterns of hydrophobic/hydrophilic residues. To assist this tedious work, sophisticated color schemes based on sequence conservation have been developed and are part of most multiple sequence alignment editors such as Jalview or Seaview.

T-Coffee provides a new evaluation scheme that is not directly based on sequence conservation but rather on the local consistency between the aligned residues and the T-Coffee default library (made of local and global pairwise alignments). A high score indicates a good agreement with the library. This consistency score can be computed for the entire alignment or for individual residues, thus yielding a local measure named the CORE index (Consistency of Overall Residue Evaluation).
The CORE index measures the overall agreement between the way a residue is aligned within the multiple sequence alignment and the way this residue is aligned in the pairwise alignments that constitute the library. The CORE index computation is extensively described in (4) and its biological relevance was analyzed using the BaliBase reference alignment collection (5). This work indicates that residues with a CORE index higher than 5 (on a scale of 0 to 9) are generally correctly aligned.
The most interesting property of the CORE index is the fact that it does not depend directly on sequence conservation. That makes it an ideal tool to distinguish between a poorly conserved regions correctly aligned and a poorly conserved region incorrectly aligned.

A-Requesting an Evaluated Multiple Alignment

1.Use the -output Flag to request an evaluated alignment

The local evaluation of T-Coffee multiple alignments can easily be obtained by requesting evaluated alignments with the -output flag, using the following command:

t_coffee
sample4.pep

-output=clustalw,score_html,score_pdf,score_ps, score_html,score_ascii
Note the request for score_xxx, a special type of formats that include a local evaluation of the alignment.

2.Examine the output files

-sample4.aln is the standard Aln formatted multiple sequence alignment that the user can view with any text editor.

-sample4.score_html: is a colored alignment in HTML format. It can be viewed with any Internet browser. On this alignment, residues appear on a background indicative of their CORE index. Blue residues have a CORE index of 0, while those with a red score have an index of 9. Evaluation is only reported for columns that contain at least two aligned residues (Figure 4).

-sample4.score_ps: a similar alignment in Post-Script format, can be printed directly or be viewed using Ghostview.

-sample4.score_pdf: a similar alignment in PDF format that can be viewed on most platform, using Acrobat Reader. The production of this format requires the converter ps2pdf to be installed on your system (this is standard on most Linux distributions).

-sample4.score_ascii: In this ASCII representation, the evaluated residues are replaced with their CORE index. In conjunction with third party software (not yet available), this file makes it possible to automatically filter out some portions of your alignment (Figure 5).

B-Evaluating a Pre-existing Alignment
3.evaluate the alignment sample4.cw_aln

t_coffee
-infile=sample4.cw_aln

-output=score_html,score_ascii

-quiet=stdout

-out_lib=sample4.tc_lib

-score
Note the -score flag. It indicates that the alignment provided via -infile must not be recomputed but simply evaluated, using a standard library that needs to be generated for this purpose. When using -score, T-Coffee runs quietly without any output, yet for the purpose of this protocol, we have set -quiet=stdout, so that the usual output appears on the screen.
The -score flag makes it possible to evaluate an alignment generated with any multiple sequence alignment package. This computation can be expensive since it requires the compilation of a complete T-Coffee library (all the pair-wise global alignments and all the local ones).

The -out_lib flag prompts T-Coffee to output its library so that it can be re-used for further evaluation, thus saving time. For instance, in order to evaluate a second alignment of the same sequences, we can re-use the previous library.

4.Use an existing library to evaluate sample4.aln

t_coffee -infile=sample4.aln

-output=score_html

-quiet=stdout

-score

-in=Lsample4.tc_lib

-in (not to be confused with -infile) controls the library compilation in T-Coffee. It is one of the most important flags (See section VI.B). The letter "L" that precedes the library filename is a converter whose purpose is to inform T-Coffee that the corresponding file is a T-Coffee library (See Table 2).
V. Support Protocol 3: Reformating Sequences, Alignments Structures and Libraries

A major source of confusion when working on a multiple sequence alignment project is the variety of formats for the data one needs to use. The T-Coffee package provides several useful facilities that render data-gathering less tedious a work than it normally is. When it comes to reformatting, T-Coffee mirrors all the functionalities of ClustalW with a few extra one such as:
-Structure fetching/reformatting utilities

-File merging

-Sequence reconciliation
This support protocol also provides an overview of the -in flag, the flag that controls the compilation of the library in T-Coffee.

A- Converting an Alignment from MSF to FASTA

1. Run a command using the -convert flag

t_coffee
-in=Asample1.msf

-output=fasta_aln

-quiet=stdout

-convert

This command turns an Msf alignment into a Fasta alignment. Note that the extension of the files has no influence on their parsing. The format recognition is automatic (supported formats and their identifiers are indicated in Table1). If it fails, we recommend to use a third party software (such as FMTseq or readseq) in order to reformat the dataset to Fasta format (Fasta is the most robust format and the easiest to parse for most packages).

2. Gather the content of several files into a FASTA file

t_coffee
-in=Asample1.msf,Pstruc7.pdb,Llib4.tc_lib

-output=fasta_seq

-quiet=stdout
-convert

This command prompts T-Coffee to concatenate several files from different formats into a single file without duplicate sequences (i.e. all the sequences have different names). The underlying process is the following:
-T-Coffee extracts the sequences from each file. The converter letter (L, A, S, P) makes it possible for the program to properly parse the associated file (see table 1 and 2 for a complete list).
-If needed, T-Coffee fetches the PDB structures (see Section V.B)
-The sequences are pulled together into a file where all the sequences have a different name.
-If two sequences have the same name but different sequences, T-Coffee attempts a reconciliation (See section V.C)
-The complete set is used for making the multiple sequence alignment.
The next section shows how T-Coffee can automatically fetch the structures one is interested in. This facility makes it possible to pretend that PDB is installed locally.
B-Converting a PDB Structure into a Sequence

3. Fetch the portion of structure you are interested in

t_coffee
-in=P1bbt2_25_50 P1aym1

-convert

-output=Fasta_seq

-quiet=stdout

This command instructs T-Coffee to start looking for the file 1bbt_25_50 (or the file 1bbt_25_50.pdb) that should contain a PDB structure (as indicated by the converter P). If this file is not in the current directory, T-Coffee uses extract_from_pdb (a script that comes with the default T-Coffee distribution) in order to fetch the chain number 2 of the structure 1bbt directly from the PDB database (www.rcsb.org/pdb). T-Coffee proceeds by extracting the segment 25 to 50 of this PDB chain, writing a file named 1bbt2_25_50.pdb in the process. If this file remains in the current directory, T-Coffee will automatically re-use its content when appropriate.
When fetching structures, T-Coffee NEVER overwrites existing files in the home directory. This way, important data cannot be lost. While aligning or converting, sequences and structures can be mixed in any suitable proportion.

C-Reconciliating of Inconsistent Sequences

4. Combine the content of two files

t_coffee

-in=sample5.pep,sample6.pep

-output=Fasta_seq

-quiet=stdout

-run_name=combined

-convert

5. Reconcilliate sequence A in sample5.pep and sample6.pep

When combining sequence datasets, T-Coffee considers that two sequences with the same name represent the same sequence. In order to verify this assumption, T-Coffee compares the two sequences to verify consistency. If an inconsistency occurs, T-Coffee attempts a reconciliation process by aligning the two sequences and determining a consensus. For instance, sequence A varies a little between sample5.pep and sample6.pep:

sample5.pep:A

-----AAAAAAACAAA-EAAAAAAAAACCCCC

sample6.pep:A

DDDDDAAAAAAA-AAAAA-AAAAAAAA-----
6.look at the content of the file combined.fasta_seq

After reconciliation, Sequence A looks like this:

 A

DDDDDAAAAAAACAAAAEAAAAAAAAAACCCC
The rules governing the computation of the reconciliation are fairly straightforward: the first sequence is the master and it is used to resolve ambiguities arising from a mismatch. The consensus is derived by replacing every gap with the associated residues.

This strategy is useful when one deals with datasets that have been obtained through database searches (where the N and the C terminus of various sequences may not be in perfect agreement with one another), it is also useful when dealing with structures where special residues may disappear or be replaced by various reformatting programs. Of course this strategy is prone to fail when the two sequences with the same name only have a very short overlap, a large number of insertion/deletions or different numbers of repeated elements.

D-Understanding the -in Flag

-in is one of the most important flags in T-Coffee. The package uses the information provided via this flag to compile its library. -in introduces the data one wishes to combine within the alignment as well as the methods used to combine these elements of data. The data consists either of sequences, structures or constraints (i.e. pre-computed libraries that give information about the sequences alignments).
The methods can either be pairwise or multiple alignment methods, but they can also be structural alignment methods (c.f. section VII). Each element that the -in flag passes to T-Coffee is preceded with a converter letter (A,L,P…). This converter indicates how this element will be used by T-Coffee. Table 1 and 2 give a complete list of the converters and of the way they can be used. For instance, the following command:

t_coffee
-in=Ssample2.pep,Asample4.aln,

Mlalign_id_pair,Mclustalw_aln
Indicates that T-Coffee will pull together the sequences coming from the files sample2.pep and sample4.aln. The A converter before sample4.aln indicates that this alignment will also be turned into a library and integrated in the final library. Mlalign_id_pair is a pairwise comparison method that will be used to compare every pair of sequences, turn each of these comparisons into a small library and add these libraries to the final T-Coffee library. Mclustalw_aln is a multiple alignment method that will be used to generate a multiple alignment of the dataset. T-Coffee will turn this multiple alignment into a library and add this library to the final one. When the compilation of the library is finished, T-Coffee will then use it to assemble a multiple sequence alignment. Lalign_id_pair and clustalw_aln are two methods installed in T-Coffee. A list of all installed method is available in the T-Coffee documentation. If needed, users can also install their own methods (cf section VIII of this unit).

When -in is omitted from the command line, T-Coffee uses a default setting:

-in= Lalign_id_pair,fast_pair

If -in appears on the command line, these default settings are reset and the only information used to compile the library is the one provided by the user.
VI. Alternative Protocol: Mixing and Comparing Alignments

A-Introduction

The variety of options when assembling a multiple sequence alignment is a major curse: there is always a choice to be made between several alternative methods. To make things worse, it is usually very hard to assess the relative biological merits of two alternative alignments. As a consequence, the user brave enough to evaluate several methods or parameter settings is often left with a puzzling collection of alternative alignments.

If we assume that the most reliable portions of an alignment are less sensitive than the others to various protocol changes, one may overcome the complicated problem of choosing the correct alignment by computing a consensus alignment based on the combination of a several alternative alignments. T-Coffee provides all the tools needed for such a combination. For instance, in this alternative protocol, we show how it is possible to use ClustalW to generate several alignments using various gap penalties, and how to combine these alignments into a single one. This protocol also shows how using a slightly different approach makes it possible to compare two multiple sequence alignments.

The first example addresses the problem of finding the best set of gap penalties for computing a multiple sequence alignment. Parameterizing gap penalties is a complicated problem because it is not possible to determine in advance (or a-posteriori) the optimal for a given family. When faced with this problem, one can generate several alignments with ClustalW, using different gap penalties, and combine these alignments into a consensus alignment with T-Coffee. In this protocol, we also show how this consensus alignment can be visually compared to one of the original ClustalW alignments.

B-Compute a Consensus Alignment

1.Generate a collection of alignments by varying the gap-opening penalty in ClustalW

clustalw -infile=sample4.pep -gapopen=10 -outfile=s4.gop10.aln

clustalw -infile=sample4.pep -gapopen=15 -outfile=s4.gop15.aln

clustalw -infile=sample4.pep -gapopen=20 -outfile=s4.gop20.aln

This yields three multiple sequence alignments that can now be combined into a single one by T-Coffee.

2.Combine your three alignments with T-Coffee
t_coffee
-in=As4.gop10.aln,As4.gop15.aln,As4.gop20.aln

-run_name=consensus
-output=clustalw,score_html,score_pdf
-evaluate=slow_tcoffee

This command instructs T-Coffee to turn every alignment into a library, to combine these three libraries into a single one, and to use this library for the assembly of a new multiple alignment named consensus.aln. The -evaluate=slow_tcoffee parameter ensures that the color-code of the score_html and score_pdf alignments reflect exactly the level of consistency between the consensus alignment and the alignments used to build the library.

3.Examine the output files

 This command generates the following two files:

consensus.aln: a clustalw type alignment

consensus.score_html: a colored output

consensus.score_pdf : another colored output

In the colored output, residues are colored according to the consistency of their alignment with the collection of alignments provided with the -in flag. Red residues are aligned in a consistent fashion across all the provided alignments, while blue and green bits correspond to unstable regions where the alignment is very sensitive to the chosen gap penalties. These unstable portions are less likely to be correctly aligned.

C-Compare Two Alignments

5.Compare the consensus alignment with another alignmnent

t_coffee
-infile=consensus.aln

-in=As4.gop15.aln

-evaluate_mode=slow_tcoffee

-output=score_html,score_pdf

-run_name=comparison

-quiet=stdout

-score

The library strategy is used here to compare two alignments and graphically display their regions of similarity, using the color-coded representation. For this purpose, we turn one of the alignments into a library (-in=As4.gop15.aln) and use it to evaluate the alignment passed by the -infile argument. The -score flag ensures that the alignment is not re-computed but simply evaluated.
6.Examine the file comparison.score_pdf

The color code indicates for each residue the proportion of the column in consensus.aln that is similar to the column containing this same residue in cw.go15.aln. Red columns are entirely identical in the two alignments.
VII. Support Protocol 4: Generating T-Coffee Libraries

This support protocol, shows how it is possible to generate a user-defined library in order to impose specific constraints to a multiple sequence alignment. Three solutions exist:
A-Outputting the T-Coffee Library during Alignment Computation
1. Use the -out_lib flag

t_coffee sample4.pep -out_lib

-out_lib causes T-Coffee to output the default library in the file sample4.tc_lib. The user can change the name of the library file by complementing the flag with a file name

-out_lib=your_library_name

Systematically saving libraries makes it easier to reproduce results.

B-Turn a Pre-existing Alignment into a Library

2. Use the -convert flag

t_coffee
-in=Asample4.aln

-out_lib

-weight=1000
-convert

When turning an existing alignment into a library, the weight associated with every pair of residues is by default the average percent identity shared by the two aligned sequences they come from (the pairwise alignment considered for this measure is the one within the multiple sequence alignment). The -weight flag allows the user to change this behavior when building a library. The normal range of value for these weights is 0-100 but imposing a higher weight, (typically 1000), makes it possible to overweight a specific alignment.
It is also possible to request position specific weights. For instance,

-weight=winsim10

causes each pair of residues to be assigned a weight equal to the local percent identity between the two aligned sequences they come from. This local percent identity is measured on a segment centered on the two aligned residues and spanning 10 residues on each side.

C-Design your Own Library

T-Coffee libraries provide a convenient way to pass pre-specified constraints to the alignment program. The best way to design such a library is to start from a template file such as the one provided in sample4.tc_lib. When working on a large project that involves many handmade alignments, saving these alignments as libraries is a convenient way to insure that this costly data can easily be injected into new projects.

The exact format specification can be found in the T-Coffee documentation (available from igs-server.cnrs-mrs.fr/Tcoffee/). Note that on the lines that describe a constraint, the two last fields can be omitted. Constraint lines only need to contain:

<offset of residue 1> < offset of residue 2> <Weight of the pair>

VIII. Basic Protocol 2: Combining Sequences and Structures

A- Introduction

For the last 20 years, the number of sequences kept in public databases has increased at an exponential pace. Structure databases have not yet experienced such an expansion and the gap between the number of known sequences and the number of known structures is rapidly widening. The effect of this structural backlog could be considerably lessened if we had at our disposal efficient means of extrapolating structural knowledge onto sequences. The development of such methods is a major goal of structural bioinformatics.
In this protocol, we show how the quality of a multiple sequence alignment can be largely improved when structural information (e.g. in the form of PDB files) is available for one or more sequences. We assume that the main motivation of the user is to learn more about the putative structure and function of a single target sequence, and that he may want to use this alignment as a starting point for the generation of a homology model.

In this protocol, we study the gene yecP from Escherichia coil, a putative enzyme. We use this sequence as a starting point in order to identify related sequences and potentially related structures (structural targets). T-Coffee is then used for checking whether the putative targets can be aligned to the sequences with enough accuracy. Once a proper set of structures has been put together, T-Coffee is used to assemble a multiple sequence-structure alignment, using a mixture of sequence-sequence, sequence-structure and structure-structure pairwise alignment methods.

B-Necessary Resources

1.Hardware

Structure comparison are expensive, therefore a powerful system may come in handy for carrying out structure comparison analysis like the one presented here.

2.Software

To run the examples in this basic protocol, the user needs the same packages as those required for the first basic protocol of this Unit. Users will also need the sap package (6) (mathbio.nimr.mrc.ac.uk) and fugue_client, a small script that renders T-Coffee able to interact with the fugue server(7), a service dedicated to threading (www-cryst.bioc.cam.ac.uk/~fugue). fugue_client is bundled in the T-Coffee distribution.
C-Collect the Sequences and the Structures

3.Collect homologous sequences with BLAST

The query sequence is in the file sample8.pep. Users can gather homologous sequences by doing a Blastp search of this target against SwissProt, TrEMBL or NR. Users should then select some of the sequences that have a bit-score higher than 25% of the bit-score of the perfect match of the target against itself (669 in the example below) (Figure 6). The sequences we chose are in the file sample9.pep.

4.Collect the Structures with the FUGUE server

The user can identify structures potentially related to the sequence of interest using the FUGUE prfsearch server (www-cryst.bioc.cam.ac.uk/~fugue/prfsearch.html). This server threads the target sequence onto every known 3D structure in PDB. It returns the identifier of the structures whose folds are the most likely to resemble the fold of the target (Figure 7). Other threading servers can be used in place of FUGUE, in particular Metaserver (bionfo.pl/meta) that simultaneously queries a large number of servers (including FUGUE). The sequences of the chosen structures are in the file sample10.pep.

5.Gather the structures from PDB

Collect the structures you are interested in from the PDB structure repository at RSCB (www.rscb.org).
6.Verify the quality of your structures

The sequences read from the PDB entries can be significantly different from the original sequence these structures were derived from: segments may be missing and residues may have been removed to help the crystallization process. These things will be better checked by the means of an alignment between each structure and its corresponding SwissProt/TREMBL sequence (see the DBREF entry in the PDB file for the corresponding accession number). For instance, to compare the structure 1kpi with its associated SwissProt entry, use the following command:

t_coffee Q11196.seq P1kpi.pdb

The resulting alignment appears on Figure 9. It shows that in the structure, some residues have been lost on the N-terminus and that a few Cysteines have been mutated. This visual inspection is very important when working with structures, in order to insure the quality of your data, in particular when the user intends to use the alignment for homology based model building.

D-Identify the Suitable Structures

7. Build a multiple alignment with each structure and the homologous sequences

The user must now decide which structures (gathered in step #2) are suitable for inclusion in the multiple sequence alignment. The best way to do this is to build an alignment that includes one of the structures and the other homologous sequences gathered in step #1. For instance, it is possible to check the suitability of 1kpi by running the following command:

t_coffee
-in=
sample10.pep,P1kpi.pdb

Mslow_pair,Mfugue_pair

-output=clustalw,score_pdf

Since this involves aligning one structure and many sequences, T-Coffee must be run with the following mixture of methods:
slow_pair for globally aligning pairs of sequences
fugue_pair uses fugue client to align every possible sequence-structure couple (in this case, it aligns every sequence with the 1kpi structure).

8. Determine suitable structures by visual inspection of the CORE index
User should only keep structures that contain a few stretches of residues with a CORE index higher than 5 (Orange or red stretches).
9. Re-run (5-6) and keep the N best structures

In this example, we kept 1kpi and 1jsx
E-Align Sequences and Structures

10. Make a multiple sequence-structure alignment

The main specificity of the dataset considered here is that it contains a mixture of sequences and structures. In order to take advantage of this, one add to the T-Coffee library compilation a structure-structure comparison method such as Sap[Taylor, 1989 #3512], that delivers an alignment based on the structural information rather than the sequence information.

t_coffee -in=
P1kpi.pdb,P1jsx.pdb,
Ssample8.pep,Ssample9.pep

Msap_pair,Mfugue_pair,Mslow_pair

 -output=score_pdf,clustal_aln
 -outorder=input

The command above instructs T-Coffee to compile a library that contains a pairwise sequence alignment for every pair of sequence (including the sequences with a known structure such as 1kpi), a sequence-structure alignment computed by fugue for every possible pair of sequence-structure and a pairwise sequence alignment based on a structure-structure comparison carried out by SAP on every potential pair of structures (1kpi versus 1jsx in this case).

While the sap alignment is carried out on your machine, the fugue alignment results from a submission to the fugue server. For this reason, users that are behind a firewall may have difficulties using this service. One may also want to refrain using it if the sequences are confidential. Finally, the fugue_pair method only works if the structures are part of the PDB database (i.e. a user cannot use unpublished structures). If this mode is not suitable one can may replace the fugue_pair method with any suitable local method (see the next support protocol), or consider acquiring a fugue license in order to run the program locally.
11. Visualize your multiple sequence alignment

Figure 10 shows a portion of the multiple alignment obtained when following the current protocol. Among other things, this alignment informs us on the regions of our structures that are suitable for modeling and those that are not. For instance, the long green stretch in 1jsx is not suitable.

XI. Support Protocol 1: Pluging new methods into T-Coffee

The previous section shows how desirable it can be to use special methods with T-Coffee, when dealing with structures. Yet, if sap or fugue are not the users methods of choice, or if the problem requires a different approach, it is possible to add new methods to the T-Coffee strategy.
In the following support protocol we show how to adapt the method one is interested in so that it can be used by T-Coffee. We then show how to customize the method configuration file so that T-Coffee can use this new alignment method.

A-Preparing your Method

Users must make sure that their method is able to read Fasta sequences and that it can output either an alignment in ClustalW (Aln) format, an alignment in Fasta format or a library in T-Coffee format. The best strategy is to encapsulate the pre-existing method inside a Perl script so that T-Coffee can run it with a system call that would use the following syntax:

Aln_script -INFILE Fasta_file -OUTFILE name

The script aln_script is provided along with the material of this Unit. It is nothing more than a short set of Perl instructions that call ClustalW with a special set of parameters. When calling aln_script, T-Coffee passes the sequences via a Fasta file. These sequences retain their original names so that Aln_script can use them to gather non-sequence based information stored in other accessory files (structure, annotation…).

The next step shows how to write a configuration file that "describes" aln_script to T-Coffee can use it.
B-Writing the Method Configuration File

The easiest procedure is to adapt the method file that comes along with the T-Coffee distribution (doc/reference_method.method). This file is also included in the Unit material. It contains the following settings.

EXECUTABLE
S aln_script

ALN_MODE

S multiple

OUT_MODE

S aln

IN_FLAG

S -INFILE&

OUT_FLAG

S -OUTFILE&

*
"*"
Indicates a comment line to ignore

*
"&"
Indicates spaces and the
*
"S" Indicates that the argument is a string

This method file indicates that in order to run (EXECUTABLE S aln_script), T-Coffee should provide all the sequences at once as indicated by (ALN_MODE S multiple). It should then expect an alignment in return, as indicated with (OUT_MODE S aln). It is possible to adapt this configuration file to many specific needs. For instance, if aln_script outputs a T-Coffee library rather than an alignment, the method file must indicate

OUT_MODE S list
Or if one wants aln_script to run on every possible pair of sequences in the dataset:

ALN_MODE S pairwise

Many other possibilities are listed in the documentation. aln_script must be an executable file that is either on the UNIX path variable or specified with its full path name in reference_method.method (EXECUTABLE S pathname/executable).
reference_method.method must either be in the directory where T-Coffee runs, or in the directory indicated by the environment variable METHODS_4_TCOFFEE. With this configuration file ready, it is possible to add this method to the list of methods that T-Coffee uses to compile its library.

C-Using your New Method

t_coffee -in=Ssample.pep,Mreference_method.method
This command instructs T-Coffee to compile its library using the new method: reference_method.method.

X. Data Interpretation
Users of multiple sequence alignment methods must realize that the assembly of a good multiple sequence alignment remains one of the most challenging tasks in bioinformatics. For instance, the high quality multiple sequence alignments on which protein profile domain collections are based (such as Pfam, Prosite or Smart) all rely on the input of skilled biologists, able to select sequences, align them, trim them, realign them, optimize manually their alignment and so on.
There is no absolute way to estimate the quality of a multiple sequence alignment since the equivalent of an E-value is not yet available for these models. This is why the user will have to rely very much on his experience in order to decide whether a pattern of conservation is meaningful or not. Generally speaking, a good multiple sequence alignment is characterized by a few ungaped blocks separated with regions enriched in indels that normally correspond to the loops. In each of the blocks (which typically span 10-30 residues) one should expect to find a few highly conserved aromatic positions (W, F, Y) and possibly a few more degenerated position.
Of course, the use of pre-established knowledge regarding the studied family can help a lot when looking at a multiple sequence alignment. For instance, an indication of an active site or a disulphide bridge should correlate with highly conserved positions within the alignment. The user should also pay attention to the positions that are highly conserved in one sub-group while being degenerated in another group. These kind of positions make good candidate for being the ones that support substrate specificity.
Although most methods make it possible to modify the parameters in order to change the aspect of an alignment, our experience is that the major source of tuning is the choice of the sequences one wishes to include in a dataset: this is where the user will find maximum flexibility when building a family model. On this issue, it is interesting to point out that many of the methods for multiple alignments have been initially developed in an era where the main question was "How to align the few sequences available?". In most cases, this question is not anymore the right one. Over the last years, data has improved faster than methods, and in most situations, given the current database sizes and the wealth of complete genomes, the most relevant question has become: "How to choose the sequences to align among all the potential homologues?" In this context, it is often possible to assemble a dataset that perfectly suits the method one wishes to use. This is especially true in the case of a progressive strategy like the one in ClustalW or T-Coffee. During a progressive strategy, sequences are incorporated into the multiple sequence alignment one after the other. As a consequence, outlier sequences distantly related to the entire set can cause trouble and degrade the quqlity of the entire alignment. This problem that can be elegantly solved by providing more intermediate sequences. These intermediates help integrating the outliers within the final alignment.
Along the same lines, a careful choice of the sequences can help alleviating a complicated problem: the modeling of long insertions/deletions. These long gaps pose problems to most multiple sequence alignment strategies and in a dataset, the sequences whose proper alignment require very long gaps should be removed. This may not be practical if these sequences also contribute important information. When such a situation arises, one should keep in mind that multiple alignment methods able to use local information (such as Dialign(8) or T-Coffee) have a decisive advantage over other more conventional methods such as ClustalW (9,10).
Last but not least, the integration of structural information within multiple sequence alignments and the ability to seamlessly mix sequence and structure information has become a key issue. Structural data is widely available and it makes little sense not to use this information when building multiple sequence alignment models. While T-Coffee is not the only multiple structure alignment program around, it is one of the few able to seamlessly combine sequences and structures, and most importantly, it is one of the most flexible.
XI. Commentary

A-Background Information

This unit presents the UNIX based multiple sequence alignment program T-Coffee. This program can be used as standard multiple sequence alignment program, in a fashion very similar to that of ClustalW. T-Coffee is also able to carry out new original tasks such as combining multiple sequence alignments, comparing them visually, evaluating the quality of a multiple sequence alignment and mixing sequences and structures.
In general T-Coffee provides a very effective way to deal with heterogeneous collections of sequence alignments. As such, it is an ideal tool for the management of long term projects that involve the coexistence of hand made multiple sequence alignments (or at least hand refined) along with automatically generated alignments. T-Coffee is also an ongoing project, rapidly evolving. Version 2 that is currently under development will include important new features, such as:

-A better handling of profile-profile alignments (including the possibility to do local profile to profile alignments)

-An improved ability to deal with structures

-An improved library-based evaluation algorithm, meant to decrease the complexity of the T-Coffee algorithm.

 m

Over the years, multiple sequence alignment methods have been established as a key component of biological sequence analysis techniques. Few procedures remain in bioinformatics that do not require at one point or another the assembly of a high quality multiple sequence alignment. One could cite in bulk: the identification of a protein signature such as a Prosite pattern(11), the building of a domain profile (or HMM) needed for identifying the most remote members of a protein family (12), structure prediction (13) and phylogenetic analysis (14). More recently, multiple sequence alignments have also proven useful to the characterization of nsSNP (the non-synonymous Single Nucleotide Polymorphisms)(15),(16).

Despite the importance of these applications, the design of an efficient and accurate algorithm for the assembly of multiple sequence alignments remains a difficult problem that has not yet been entirely solved. As a consequence, most of the available packages merely provide approximate solutions (for recent reviews on this problem, see (17) and (18)). Furthermore, none of these methods is consistently better than the others. For instance, systematic benchmarking experiments carried out with established collections of reference alignments have shown that each available package is better suited than the others to certain types of problems but that none is always the best (9). This situation explains why from one bioinformatics project to the next, the authors often use a different multiple sequence alignment package. Unfortunately it is usually difficult to determine which software or algorithm will work best on a given set of sequences and the only way to address this problem is through a tedious trial and errors process.

B-Critical Parameters/Troubleshooting

CPU and Memory Requirement

In contrast with other sequence alignment methods, T-Coffee is not extremely sensitive to the choice of parameters. In fact the program has very few parameters, the main one being the way a cocktail of methods is assembled to create the T-Coffee library, via the -in flag.

The main limitation of T-Coffee is its important computational requirements: T-Coffee requires more memory and more time than ClustalW, its close relative. On average, this program is about N times slower than ClustalW. In practice, this means that T-Coffee should be used with relatively small test-sets (less than 100 sequences). With larger data sets, the most efficient strategy involves "exploring" the data with ClustalW or with T-Coffee used in the fast approximate mode, in order to add or remove sequences. The next step would then be to produce a refined alignment with T-Coffee, using in the slow/accurate default mode.
Structural Analysis
In terms of resource requirements, things get worse when using structure comparison methods. Structures are computationally more expensive to analyze than sequences and the results may not be entirely reproducible, especially when they depend on web based resources (such as the fugue_pair method). This is the reason why users are encouraged to take full advantage of the T-Coffee buffering facilities that save any web based result in an appropriately named file that T-Coffee can automatically re-use.

C-Suggestions For Further Analysis

With a high quality multiple sequence alignment in hands, users will be able to carry out a wide variety of tasks that include: Protein domain analysis (Unit 2.1-2.10) and domain based database searches (Unit 3C.8). The users will also be able to carry out phylogenetic reconstruction, using the resources introduced in Chapter 6.
D-Litterature Cited

1.
Notredame, C., Higgins, D.G. and Heringa, J. (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol, 302, 205-217.

2.
Thompson, J., Higgins, D. and Gibson, T. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-4690.

3.
poirot, O., E., O.t. and Notredame, C. (2003) Tcoffee@igs: a web server for computing, evaluating and combining multiple sequence alignments. Nucleic Acids Res, (in press).

4.
Notredame, C. and Abergel, C. (2003) In Andrade, M. (ed.), Bioinformatics and Genomes. Springer Verlag; (January 15, 2003), pp. 150-175.

5.
Thompson, J., Plewniak, F. and Poch, O. (1999) BaliBase: a benchmark alignment database for the evaluation of multiple sequence alignment programs. Bioinformatics, 15, In Press.

6.
Taylor, W.R. and Orengo, C.A. (1989) Protein structure alignment. Journal of Molecular Biology, 208, 1-22.

7.
Shi, J., Blundell, T.L. and Mizuguchi, K. (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol, 310, 243-257.

8.
Morgenstern, B., Frech, K., Dress, A. and Werner, T. (1998) DIALIGN: finding local similarities by multiple sequence alignment. Bioinformatics, 14, 290-294.

9.
Lassmann, T. and Sonnhammer, E.L. (2002) Quality assessment of multiple alignment programs. FEBS Lett, 529, 126-130.

10.
Katoh, K., Misawa, K., Kuma, K. and Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res, 30, 3059-3066.

11.
Bairoch, A., Bucher, P. and Hofmann, K. (1997) The PROSITE database, its status in 1997. Nucleic Acids Research, 25, 217-221.

12.
Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Barrell, D., Bateman, A., Binns, D., Biswas, M., Bradley, P., Bork, P. et al. (2003) The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Res, 31, 315-318.

13.
Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol, 292, 195-202.

14.
Phillips, A., Janies, D. and Wheeler, W. (2000) Multiple sequence alignment in phylogenetic analysis. Mol Phylogenet Evol, 16, 317-330.

15.
Ng, P.C. and Henikoff, S. (2002) Accounting for human polymorphisms predicted to affect protein function. Genome Res, 12, 436-446.

16.
Ramensky, V., Bork, P. and Sunyaev, S. (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res, 30, 3894-3900.

17.
Notredame, C. (2002) Recent progress in multiple sequence alignment: a survey. Pharmacogenomics, 3, 131-144.

18.
Duret, L. and Abdeddaim, S. (2000) In Higgins, D. and Taylor, W. (eds.), Bioinformatics, Sequence, structure and databanks. Oxford University Press, Oxford.

E-Internet Resources
The T-Coffee home page is: igs-server.cnrs-mrs.fr/Tcoffee/

F-Key references
1.
Notredame, C., Higgins, D.G. and Heringa, J. (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol, 302, 205-217.

2.
Thompson, J., Higgins, D. and Gibson, T. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673-4690.

3.
Shi, J., Blundell, T.L. and Mizuguchi, K. (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol, 310, 243-257.

4.
Taylor, W.R. and Orengo, C.A. (1989) Protein structure alignment. Journal of Molecular Biology, 208, 1-22.

List of Sample Files
sample1.pep

sample2.pep
sample2.aln
sample3.pep

sample4.pep
sample4.aln
sample4.tc_lib s4.gop10.aln, s4.gop15.aln s4.gop20.aln
sample5.pep

sample6.pep

struc7.pdb

sample8.pep

sample9.pep

sample10.pep

Aln_script

reference_method.method

Table List

Table 1: output formats available in T-Coffee

Format

Description

Input

Output
Name

Descriptor

(See Table 2)
clustalw

Clustal Aln

S,A,R

yes

t_coffee_aln
Clustal-like

S,A,R

yes

Fasta_aln

FASTA Aln

S,A,R

yes

Fasta_seq

FASTA seq

S

yes

Swissprot_seq
SwissProt seq

S

no

pir_aln

PIR Aln

S,A,R

yes

pir_seq

PIR seq

S,A,R

yes

Msf_aln

MSF Aln

S,A,R

yes

tc_lib

T-Coffee lib

L

yes

pdb

PDB

P

no

matrix

Subtstitution mat
X

no

score_html
evaluated Aln

no

yes

score_pdf

evaluated Aln

no

yes

score_ascii
evaluated Aln

no

yes

dnd

dendrogram

-

yes

Table 2: Format descriptors

__

Descriptor

Description

__

S
Sequences within the file must be treated as unaligned sequences

--

A

Aligned Sequences

--

R
The alignment within the file must be treated as a Profile

--

L
T-Coffee library file (See Figure ###)

--

P

PDB structure

--

X

Substitution matrix

--

Figure 1: Default Output of T-Coffee

[image: image1.png]OUTPUT RESULTS
Dendrogram file [sampled.dnd]
output file [sampled.aln] in [clustalw] format

Figure 2 output of T-Coffee when requesting several different output formats with the -output flag.

[image: image2.png]OUTBUT RESULTS

Dendrogram file [sampled.dnd

output
output
output
output

pythagore 1033 |J

file
file
file
file

[sampled.aln] in [clustalw] format
[sampled.nsf_aln] in nsf_aln] format
[sampled.fasta_aln] in [fasta aln] format
[sampled.fasta_seq] in [fasta seq] format

Figure 3: choosing subgroups with the help of a phylogenetic tree

[image: image3.png]Fontsize |[JEK=] T Show distances Close | Output

1bbt2

1bbt3

1aym3

1btt

1aym1

Figure 4: The score_html output of T-Coffee where residues are colored according to their CORE index.

[image: image4.png]T-COFFEE, Version_1.42(Wed Jul 10 14:22:34 MDT 2002)
Notredame, Higgins, Heringa, JMB(302)pp205-217,2000

SCORE=27
s
B> avaIGE0
,
1bbt3 31
28
24
28
20

1bbt3
laym3
1bbtl
layml
1bbt2

Cons

1bbt3
laym3
1bbtl
layml
1bbt2

Cons

1bbt3
laym3
1bbtl
layml
1bbt2

Cons

M-SNTFLAGLAQYYTQYSG -TINLHFMETGH AYAPPGME -PPKT -- - -— -]
PLATTLIGEIASYFTHWIG-SLRFSFMFCG! AYTPPGIG-KPRS -
P-SHTLVGGLLRASTYYF WVPNGAP -

DS -ET' I YVPPGAP -IPTT-

L p—

Figure 5: An ascii representation of the CORE index: every residue is replaced with its CORE index.

[image: image5.png]Notredam

CPU TIME:

SCORE=27
*

e, Higgins, Heringa, JMB(302)pp205-217,2000
2 sec.

BAD AVG GOOD

B
1bbt3
layn3
1bbtl
laynl
1bbt2

1bbt3
layn3
1bbtl
laynl
1bbt2

Cons

1bbt3
layn3
1bbtl
laynl
1bbt2

Cons

1bbt3
layn3
1bbtl
laynl
1bbt2

Cons

32
29
23
29
21

---0000000000--- -1111111111111111111111111221221-123
-00111111111111111111111111111111222221122222221221--22
--01111122222221-- —------1111111-------1111-122
EMSVESFLG0000011111222222211 -11110000000011111112222-223
- --0111111111111111110W011

---00110111-122

32-333333333333344444444444——
222333333333333333444444444-
22-322223333333333333333333- 3342 -114454443-
322-22222222222233444444444- 5666665-444
111111111111111122222222222 YMRNGWDVEVT2232222222222222222211111

----334222222222225555554-444
334222222222225555554-444

221222222222222233333333333 - ----334222222222224454444-333

- 665542 11344775644434557776666555555443222
-443342 11244654433324446666666555444443222
-333-2333322122--221111-3333332222222222221---111111111
-43334333332223355443332-5566665554444444432226111111111
1LYQLTLF1111-2444422-- ---23335555555333-----1111----

-443342333322233664433324445555555444444442222-111111111

Figure 6: Selecting putative Homologues from a BLAST output
[image: image6.png]£c]:JULB60 yecP; Hypothetical protein [SP:YECP_ECOLI]
e cco:blBT1 yecP; hypothetical 37.0 kD protein in aspS-bisZ inter
200102285 yecP; hypothetical protein yeck
ecsiECS258] putative enzyme
20e:22024 yecP; putative enzyme
SELISFI012 yecP; putative enzyme
Stn:STHISE yecP; putative enzyme
- 3ty:STY2114 conserved hypothetical protein
vpk:y2262 putative enzyme
- ype:TPO2049 conserved hypothetical pratein
o UVI2183 conserved hypothetical protein
- hinHII351 hypothetical protein HIL3S1 [SP:YECR HAETN]
- UCh:VCIIE3 conserved hypothetical protein
uPMOID hypothetical HI1361
20n:502436 methyltranserase, putative
PDUPPIAAD methyltransferase, putative
B p22:PHOTI4 conserved hypothetical protein
g hpy:EPO418 conserved hypothetical protein
hpi:fho0965 putative
- c32:0i0876 hypothetical protein £j0976
ome:SHb20238 hypothetical protein

669
669
668
665
665
656
629
629
524
524
448
443
437
436
432
E=
343
205
107
101

62

o181
o181
o146
o146
e-12t
e-12:
o122
o122
e-t2r
40-07
1052
3052
9-51
5e-a8
6e-09

Figure 7: Identifying potential structural homologues with the Fugue server

[image: image7.png]Profile Hit
hligha
heljona
helinga
hslkva
helihha
hallsia
oms
hedlxvan
heldusa

Bsljgla

PLEN

283

103

219

239

103

178

201

202

192

215

RAVS

141

04

143

-103

-116

132

-160

-175

138

164

RVN

282

235

214

216

219

218

267

239

199

205

SCORE

17

17

17

17

16

16

15

15

15

14

70

65

25

06

95

86

92

)

£

98

Z0RT

20

20

20

19

19

19

18

18

18

17

&7

E

21

9

84

79

%0

E

32

97

AL

0

02

0

0

02

02

0

0

02

02

CERTAIN

CERTAIN

CERTAIN

CERTAIN

CERTAIN

CERTAIN

CERTAIN

CERTAIN

CERTAIN

CERTAIN

Figure 9: Comparing two sequences with T-Coffee

[image: image8.png]1kpi
CFiz_myCT

1kpi
CFiz_myCT

1kpi
CFiz_myCT

1kpi
CFiz_myCT

1kpi
CFiz_myCT

1kpi
CFiz_myCT

QLKPPVEAVRSHYDKSNEFFKLWLDPSHTYSCAYFERPDMTLEEAQYAK

MTSQGDTTSGTQLRPPVEAVRSHYDKSNEFFKLULDPSUTYSCAYFERPDUTLEEAQYAK

RKLALDKLNLEPGHTLLDIGCGUGS THRHAY AEYDVNY IGLTLSENQY RHDKANFDEVDS

RKLALDKLNLEPGHTLLDIGCGUGS THRHAY AEYDVNY IGLTLSENQY RHDKANFDEVDS

PRRKEVRIQGVEEFDEPVDRIVSLGAFEHF ADGAGD AGFERYDTF FKKF YNL TPDDGRHL
PRRKEVRIQGUEEFDEPVDRIVSLGAFERF ADGAGD AGFERYDTF FKKF YNLTPDDGRHL

LHTITIPDKEEAQELGLTSPHSLLRF IKF ILTE TFPGGRLPRISQVDYYSSNAGUKVERY

LHTITIPDKEEAQELGLTSPHSLLRF IKF ILTE TFPGGRLPRISQVDYYSSNAGUKVERY

HRIGANYVPTLNAVAD ALQARKDEAT ALKGQETCD T YHHYLRGCSDLFRDKYTDVCQFTL

HRIGANYVPTLNAVAD ALQARKDEATALKGQETYD I YHHYLRGCSDLFRDKYTDVCQFTL

vE
vE

Figure 10: A CORE color coded multiple alignment that includes two structures.

[image: image9.png]1kpi

ljex
eco_b1871
sty _STY2114
ype_YPO2049
hin_HI1351
veh_VC1163
pae_PA0774
hpy_ HPO0419
cje_Cjo0976

Cons

1kpi

1jsx
eco_b1871
sty _STY2114
ype_YP0O2049
hin_HI1351
veh_VC1163
pae_PA0774
hpy_ HPO0419
cje_Cj0976

Cons

78

72
139
139
139
138
139
138

72
114

145

fffffff .TLEEAQYAKRKLALDKLNLBPGMTLLDIGCGWGST* -MR
fffffffff EMLVRHILDSIVVAPY- - -LQGERFIDVEGTGPGLPGIPL
PFSLYGVNIDTEWRSDWKWDRVLPHLSDLTERTILDVEGCGEGSEYH - - MW
PFSLYGVDIDTEWRSDWKWDRVLPHLSDLTERTILDVEGCGEGSEYH - -LW
PFSLYGLDIDTEWRSDWKWQRVLPHISPLAGRTILDVECGSEYH - -LW
PYHLFGIHVDCEWRSDFKWDRVLPHLSPLQEGRTILDVGCGSGYH - - MW
PYHLHGIHIDTEWRSDWKWDRLLPHISPLKNRLEVLDVGCGNGYH - - MW
PFDFFGVQVDTEWRSDWKWERVSPHV - ELRGKRVEDVECEGNEY Y - - QW
PFEISQIKIDSEWDSSIKWD-LVKNATPLKDKVMVADVEGENNGYY - -LF
PFKIDDLFIDTEWQSFIKFNILKPFMNEISQKCVADIGCNNGYY - -MF

HAVAEYDVNVIGLTLSENQYAHDKAMFDEVDSPRRKEVRIQGWEEFDE
SIVRPEAHFTL-LDSLGKRVRFLRQVQHELKLE-NIEPVQSRVEEFPS
RMIGAGAHLAVGIDPTQLFLCQFEAVRKLLGNDQRAHLLPLGIEQLPA
RMIGAGAHLAVGIDPTQLFLCQFEAVRKLLGNDQRAHLLPLGIEQLPA
RMIGEGAHLAVGIDPMQLFLCQFEAIRKLLGGDQRAHVLPLGIEQLPE
RMVGEGAKMVVGIDPTELFLCQFEAVRKLLNNDRRANLIPLGIEQMQP
RMLGEGAQQVFGIDPSELFLIQFEAVRKLLGDDQRVHLLPLGIEQMPE
RMLGAGAESVVGVDPNWLFLCQFLAAKRYLPELPAWHL-PLALEDLPE
KMLEHGPKSLVGFDPGVLVKKQFEFLAPFFDKEKKIIYESLGVEDLHE
KMLEFNPAKLIGEDPSIKYRLQFELINALAKTPIKYEL--LGVEDLPS

77

71
138
138
138
137
138
137

71
113

144

1265
117
186
186
186
1865
186
184
119
159

192

1

_1109779046

_1109779747

_1109780316

_1109780516

_1109780003

_1109779472

_1109778747

