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ABSTRACT

We describe anew method (T-Coffe@ for multi ple sequence dignment that provides
a dramatic improvement in acairacy with a modest saaificein speed as compared to
the most commonly used alternatives. The method is broadly based on the popuar
progressve gproadc to multi ple alignment but avoids the most serious pitfall s caused
by the greedy nature of this agorithm. With T-Coff eewe pre-processa data set of all
pairwise dignments between the sequences. This provides us with a library of
aignment information that can be used to quide the progressve dignment.
Intermediate dignments are then based na only on the sequences to be digned next
but aso on hav al of the sequences aign with ead cather. This aignment
information can be derived from heterogeneous urces such as a mixture of
alignment programs and/or structure superposition. In this paper we ill ustrate the
power of the gpproach by using a combination of loca and dobal pairwise dignments
to generate the library. The resulting alignments are significantly more reliable, as
determined by comparison with a set of 141 test cases, than any of the popuar
aternatives that we tried. The improvement, espedaly clea with the more difficult
test cases, is dways visible, regardlessof the phylogenetic spreal of the sequencesin

the tests.



INTRODUCTION

The simultaneous alignment of three or more nucleotide or amino add sequences is
one of the commonest tasks in hioinformatics. Virtually al proteins belong to
multi gene families and there ae more and more examples with ead protein appeaing
as the various genome sequencing projeds deliver their data. Multiple dignments are
an essential pre-requisite to many further analyses of protein families such as
homology modeling or phylogenetic remnstruction a are smply used to ill ustrate
conserved and variable sites within afamily. These dignments may be further used to
derive profiles (1) or hidden Markov models (2, 3) that can be used to scour databases

for distantly related members of the family.

The automatic generation of an acarate multiple alignment is potentially a daunting
task. Idedly, one would make use of an in depth knowledge of the evolutionary and
structural relationships within the family but this information is often ladking or
difficult to use. Genera empiricd models of protein evolution (4, 5, 6) are widely
used instead bu these can be difficult to apply when the sequences are lessthan 30%
identicd (7). Further, mathematicdly sound methods for carying aut alignments,
using these models, can be extremely demanding in computer resources for more than
a handful of sequences (8, 9). In pradice heuristic methods are used for all but the

small est data sets.

The most commonly used heuristic methods are based on the progressve dignment
strategy (10, 11, 12) with ClustalW (13) being the most widely used implementation.
The ideais to take an initial, approximate, phylogenetic tree between the sequences

andto gradually build up the dignment, following the order in the tree The sequences



are digned singly or in groups, two by two, using dynamic programming (14, 15),
urtil the dignment isfinished. This method has proved successul in awide variety of
cases and dten produces high quality alignments. It does, however, suffer from the
algorithmic greedinessinherent in this grategy. The first alignments that are made
may contain errors and these canna be redified later as the rest of the sequences are
considered. This direds the dignments into what we refer to as alocd minimum (as
distinct from a desired gobal minimum) using an energy landscgpe a an anaogy. T-
Coffeeis an attempt to minimize this effed, and althoughthe strategy we propose
here is aso a gready progressve method it all ows for much better use of information

in the ealy stages, aswe will seelater.

The main alternative to progressve dignment is the smultaneous alignment of al the
sequences. The Carill o and Lipman algorithm (8) and MSA (16), its implementation,
allow the simultaneous alignment of up to about 10 sequences. Even here, there are
restrictions on the nature or the gap scoring functions that can be used and some data
sets canna be digned if the sequences are too dvergent. MSA was recantly extended
to larger data sets using a divide and conquer method (17) but remains an extremely
CPU and memory intensive gproadh. lterative strategies (18, 19) provide an
interesting alternative, as these might be gplicable to relatively large data sets. These
do nd provide aty guarantees abou finding qotimal solutions but are reasonably
robust and much less nsitive to the number of sequences than their deterministic

counerparts.

All of these methods attempt to cary ou globa alignments where one tries to aign
the full lengths of the sequences with ead aher. Alternatively one might wish to

consider locd similarity as occurs when two proteins sare only a domain or motif.



For two sequences, there is the well known Smith and Waterman algorithm (20). In
this paper we use Lalign (21), from the FASTA padage(22) which is a variant of
Smith and Waterman. It produces %ts of non-overlapping locd alignments from the
comparison d two sequences. For multiple sequences, MACAW (23) is a semi-
automatic method that produces blocks of alignments dared by all or a subset of the
sequences. The Gibbs sampler (24) and Dialign (25) are the main automatic methodks.
These programs often perform well when thereisa dea block of ungapped alignment
shared by al of the sequences or where there ae blocks of aignment separated by
long insertions or deletions. They perform poorly, however, on genera sets of test
cases when compared with gobal methods ((26,44) and this work). In principle, a
method able to combine the best properties of global and locd multiple dignments
might be very powerful. This is the seaond motivation for the T-Coffee method We
generate multiple dignments using a combination d global and locd alignment
information from ead pair of sequences. It provides a smple, flexible and, most
importantly, acarate solution to the problem of how to combine information of this
sort. In this paper, we only consider combining two sources of information. In
principle, there is no limit to the number of sources that could be used. Accuracy is
tested as overal performance on 141 test case dignments from the BaliBase

colledion (26, 27).



METHODS

T-Coffee(Tree based Consistency Objedive Function for alignmEnt Evaluation) is a
genera strategy aimed at combining heterogeneous ources of alignment information
into a single multiple sequence dignment. The protocol described here is an efficient
way to combine sets of loca and dobal pairwise dignments. This st of alignmentsis
referred to as the primary library (Figure 1). A procedure named matrix extension is
used to convert the primary library into a paosition spedfic scoring scheme cdled the
extended library. This is used to generate the multiple dignment in a progressve

manner, smilar to ClustalW.

1-Generating aprimary library of alignments

Two types of libraries are used: primary and extended. A primary library may contain
locd or global alignments. We use the structure described in (28), which dces not
require the dignments to be consistent. This means that it is possble to have severa
conflicting alignments in the same library (e.g. two dfferent alignments of the same
sequences). We include, in the library, information for ead of the N(N-1)/2 sequence
pairs, where N is the number of sequences. For ead pair of sequences, global and
locd alignments are included. Global alignments are constructed using ClustalW with
default parameters (version 1.75). Locd aignments are the 10 top-scoring nar-
interseding locd aignments gathered using Lalign (default parameters) from the
Fasta package (21, 22). It shoud be stressed that no multiple dignment is computed

for the primary libraries.



In the library, ead alignment is represented as alist of residue pairwise matches (e.g.
Residue x of Sequence A matches Residue y of Sequence B). In effed, ead of these
pairs is a @nstraint. All of these @nstraints are not equally important. Some may
come from portions of alignments more likely to be arred, for example if thereis a
high level of identity between the sequences or a high level of locd similarity. An
appropriate strategy must take this into acmurt when computing the multiple
alignment and gve priority to the most reliable residue pairs. This can be achieved by

using aweighting scheme.

2-Derivation of the primary library weights

T-Coffee @mputes a weight for ead pair of aligned residues dedared in the library
(Figure 2a). An ided primary weight will refled the corredness of a constraint. We
use sequence identity, a aiterion known to be areasonable indicaor of acaracy
when aligning sequences with more than 30% identity (7). It is a weighting scheme
that proved effedive for a previous consistency based olbjedive function (28).
Libraries thus generated are lists of weighted pairwise @nstraints. Each constraint
recaves a weight equal to percent identity within the pairwise dignment it comes
from. For eat set of sequences, two primary libraries are computed along with their

weights: one with ClustalW (global) and ancther with Lalign (locd).

3-Combination of thelibraries

Sinceour aim isthe efficient combination of locd and dobal information, the poding

of the ClustalW and Lalign primary libraries is an esentia step. The process is

straightforward. If any pair is dugicaed between the two libraries, it is replaced with



asinge entry that has a weight equal to the sum of the two weights. This'stacking' d
the signal is smilar to previously described strategies (29, 30, 31). The size of the
resulting library depends on the level of consistency between the two libraries. In the
worst case (i.e. total inconsistency), it equals the sum of their individual sizes. This
primary library can be used dredly to compute a multiple sequence dignment.
However, acarracy is improved when interna consistency is taken into acourt. To

dothis, we devised areevaluation step named library extension.

4-Extending thelibrary

Fitting a set of weighted congtraints into a multiple dignment is a well-known
problem, formulated by Kecegoglu as an instance of the Maximum Weight Trace an
NP-complete problem (32). Receaitly, two heuristic optimizaion strategies were
propased (28, 33). The first one relies on a Genetic Algorithm while the second is
based ona graph theoreticd method wsing a branch and bour algorithm. Neither of
these methods is entirely satisfadory. The genetic dgorithm (28) is rather robust but
may require prohibitive computation time. The graph theory based algorithm has a
complexity only partially charaderized and may fail in some caes for reasons that are

difficult to predict.

We drcumvent the problem by using a heuristic dgorithm. We dtempt to consider
information from all sequences smultaneously by an approach which we cal
extension (Figure 2b). The overall ideais to combine information in such a manner
that the final constraints for a given pair of sequences refled some of the information
contained in the whale library. To do so, atriplet approad is used as simmarized in

Figure 2b. The strategy beas me similarities with the concept of overlapping



weights developed in Dialign (25) or the intermediate sequence method popased by

Neuwald for seaching databases (34). It can be explained asfoll ows:

Let us consider 4 sequences A, B, C and D. A(X) isresidue x within sequence A, B(y)
the residue y of sequence B and <P(A(x), B(y),W) the pair associating these two
residues with aweight W in the library (e.g. A(6) B(14) in Figure 2a). The extension

strategy is down in Figure 2b. If there exist two pairs <°(A(x),C(2,W1) and
P(C(2),B(y),W2), then anew pair SP(A(X), B(y),W3) is added to the library. W3 is st
to the minimum of W1 and Wy, so that it gets the value of its weekest comporent

(e.g. a dhain always has the strength of its wegkest link). We cdl this new pair an
alignment of A and B through sequence C (A(6) C(15), C(15) B(14) in Figure 2b).
The same processis caried ou through sequence D and eneraly for al triplets
invalving sequences A and B. Oncethe operation is complete, sequence pair A and B
will have gathered information from all the other sequencesin the set. This Senario is
repeded for eat remaining pair (AC, AD, BC, BD, CD). The mmplete set of pairs

condtitutes the extended library. The worst case wmplexity of this computation is

(O)NSBLZ with L being the arerage sequence length. However, this will only occur

when al the included pairwise dignments are totally inconsistent. In pradice, with

the data sets used here the mmplexity is closer to (O)NSL.

As pointed ou ealier, the extended library can be regarded as a position spedfic
scoring scheme. For ead pair of sequences, it assgnsits paositive library weight to the
amino add matches correspondngto library pairs, while matches not expressed in the
library receve a default value of 0. Several agorithms have been propased for

reacnstructing a multiple alignment from lists of weighted constraints (33, 35).



Unfortunately, these dgorithms usualy have a high complexity and may have
problems in deding with noisy data (i.e. incorred weights). As a more dficient

aternative, we use progressve dignment with dyramic programming (10, 11, 12).

5-Progressive alignment strategy

In the progressve dignment strategy we use (13), pairwise comparisons are first
made to produce a guide tree using the Neighba Joining method (36). The
progressve multiple dignment then foll ows the topdogy of the guide tree As used
here, the procedure does not require any additional parameters sich as gap penalties.
This gems, in part, from the fact that the substitution values (the library weights) were
computed on alignments where such penalties had already been applied. Further, high
scoring segments that show consistency within the data set seetheir score enhanced
by the extension to such a point that they become insensitive to gap penalties. In
pradice, this means that during the progressive phase, we use a dynamic
programming algorithm (15) with gap opening penalties and gap extension penalties
set to O for aligning two sequences or two goups of pre-aligned sequences. The

library replaces a standard substitution matrix.

6-Biological validation of theresults

In order to test the acaracy of our method we used the Bali Base database of multiple
sequence dignments (26, 27). This colledion contains 141 protein families. For most
members within ead family, a 3D dructure is available. The BaiBase multiple
alignments were a@nstructed by manual structure comparison and validated using

structure superposition algorithms sich as SSAP (37) or DALI (38). The alignments

10



are thus unlikely to be biased toward any spedfic method For analysis purposes the
authors have anaated these dignments by marking the wlumns deemed to be
corredly aligned. Such dedsions were made in a cnservative manner, only including
blocks for which structural evidence is conclusive. Altogether, these trusted regions
represent 58% of the digned residues (27). There ae five basic cdegories of
aignments (families) in BaliBase, encompassng most of the stuations that arise
when making multiple sequence dignments. The first caegory is made of
phylogeneticdly equidistant members. In the second caegory, ead family contains
one orphan sequence with a group d close relatives. The third caegory contains two
distant groups while the fourth and fifth categories respedively involve long
insertions and celetions. Overall, these 141 test cases constitute one of the most
versatile and senstive benchmark available today for asessng the acaracy of

multi ple sequence di gnment methods (26).

Validation is done by comparing a cdculated multiple dignment to its courterpart in
BaliBase. The scoring scheme is the percentage of the trusted columns in the
reference that have been corredly aligned. This columnwise comparison hes been
described as being more sensitive and dscriminating (26) than the aternative
pairwise cmparison wsed by Gotoh (19). This is espedaly true in the cae of

caegories 2 and 3of BaliBase (26).

7-Comparison with other methods

To compare T-Coffee with aher methods, multiple dignments of ead BaliBase
family were produced with other programs. Four such padkages are included in this

study. They cover most of the existing types of agorithms for multiple sequence

11



alignment. SAM is a hidden Markov model (HMM) algorithm (39, 40). It attempts to
simultaneously aign al the sequences by optimizing the parameters of a hidden
Markov model. Prrp (19) aso smultaneoudy aigns all the sequences, but in an
iterative manner. ClustalW (13) is a progressve dignment method Dialign2 (35) isa
segment based method that constructs the multiple alignment by asembling a
colledion d high scoring segments in a sequence independent progressve manner.
Methods based on multidimensional dynamic programming like MSA (16) or DCA
(17, 41) could not be used in the evaluation as they aborted the @nstruction of
alignmentsin abou 10% of the BaliBase sets. For the alignments that MSA and DCA
could construct, the acaracy was comparable to Prrp. An attempt was also made to
use the Gibbs sampler, a locd alignment procedure based on stochastic optimizaion
methods (24). Unfortunately, it appeaed that this method is not redly suitable for
most families in BaliBase (ladk of well defined ungapped blocks and too few

seguences).

8-Statistical validation

It is criticd to establish whether differences observed between two methods are
satisticdly meaningful. We used the same strategy as Gotoh (19). It involves
applying the Wil coxon signed matched-pair ranked test on the results obtained with
two methods on the 141 BadiBase families. This nonparametric test alows the
asociation d a P-value with the diff erences measured onthese two series of results.
This P-value is the probability that the observed dfferences may be due to chance

The lower the P-value, the more significant the resullt.

9-Implementation

12



T-Coffeeis implemented in ANSI C. It is avail able on request from the authors and
will be distributed with dacumentation and examples. For this work, the program was

run onaLINUX platform with a Pentium |1 processor (330 MHZ).

13



RESULTS

1-Combining local and global alignmentswithout extension

The dfed of combining locd and global alignments is shown in Table 1la and b.
Three dternative primary libraries (i.e. withou extension) were used to make the
aignments. the ClustaW pairwise library (C), the Lalign pairwise library (L) and
poding d the ClustalW and Lalign pairwise libraries (CL). The results very clealy
indicate that CL is an improvement over C and L. In eath o the five BaiBase
caegories, the combination of locd and global information induced an improvement
over the two single method-based protocols. On average (Tot in Table 1a), CL is at
least 7.6 percentage points better than C or L. The statisticd significance of this result
is confirmed by the Wil coxontest (Table 1b) as the observed differences between CL
and C or L are associated with P values lower than 0.001. This srows the dficiency of
combining locd and dobal information to make an alignment. Next we ill ustrate the

effed of library extension.

2-Effect of thelibrary extension

The three previously used libraries (C, L, CL) were extended. In all three cases,
extended libraries (CE, LE, CLE) induced improved performance when compared to
their nonextended courterparts (C, L, CL) (Table 1la). These differences in
performance, al highly significant (Table 1b), show that library extension always
results in an improvement, regardless of the BaliBase cdegory (Table 1a). Most
importantly, CLE significantly outperforms all the dternative protocols in all cases.

Table 1a dso shows that the performance of CLE is highly sustained. It is consistently

14



the best protocol and enhances the dignment acaracy with values between 3.2 and
5.7 percentage points over the next best. In contrast, the second hest protocol varies
over the BaliBase cdegories (CE in Cat. 1 and 2 CL for Cat. 3, LE in Cat. 4 and Cat.
5). This clealy indicates that the library extension grealy improves the aility of the

algorithm to handle awide range of situations.

These results siow that the wmbination of locd (Lalign) and globa (ClustaW)
information bogts the quality of multiple dignment. Table 1b indicaes that the CLE
protocol is outperformed by the second hkest protocol (CL) in lessthan 126 of the
cases, as assessed owver 141 BaliBase families. It shoud be stressed that to adbtain
these results, no training or fine-tuning of the parameters was performed. The
parameters used for Lalign and Clusta W were the defaults, puldished by the authors

in versions that predate Bali Base by more than ayea.

3-Comparing T-Coffee with other multiple sequence alignment methods

The protocol used to assssthe five methods (SAM, Dialign, ClustaW, Prrp and T-
Coffee(CLE)) isidenticd to that described in the previous fdion and the results are

organized in asimilar layout (Table 2aand 2.

Table 2a and b indicae that Prrp dightly outperforms ClustalW (P vaue: 0.02). The
difference @nfirms the results reported by Gotoh (42) with Prrp being the second hest
methodin four out of five caegories. Categories 4 and 5 involve families of proteins
with long N/C termina extensions, where one would exped locd aignment methods
to perform well. Indeed, Dialign2 outperforms all the global methods (apart from T-

Coffee in caegory 4 and is a dose competitor to Prrp for category 5. The results for

15



caegory 4 aso indicae that although ClustaW is never the best method, its

performanceis well sustained over various BaliBase cdegories.

T-Coffee (CLE protocol) shows the highest average accracy in ead BaliBase
caegory. In these five cdegories, all the observed dff erences between T-Coffee and
the other methods are aswociated with P values lower than 0.01. For example, the
average difference in acarragy between T-Coffee and its closest competitor (Prrp) is
nealy 6 percentage points, asociated with a highly significant P-value of 0.003
(Table 2a, Totall). The unweighted average over the five categories (Table 2a,
Total2) is even more dramatic with a 9.7 percentage poaints better performance for T-

Coffee

Most of the improvement with T-Coffee tends to concentrate in the BaliBase
alignments having alow level of average identity. Figure 3 follows the representation
propased by Gotoh for comparing two methods (19) and shows that the alignments
for families with lessthan 30 % average sequence improve the most. At this low
identity level, there is a more than 2/3 chanceto obtain the best alignment when using

T-Coffeerather than Prrp.

4-Application to Serine/Threonine kinases

A major applicaion of any alignment algorithm will be the delinedion of motifs or
domains. These dements are aucial for an in-depth understanding o sequence
function. Their corred identification can be crucia for homology modeling or drug
design. In Figure 4 we show an example that ill ustrates the usefulnessof T-Coffeefor

identifying functional feaures of a series of kinases taken from BaliBase. These

16



proteins belong to a subfamily of protein Serine/Threonine kinases. Each sequence
(apart from gcn2) is identified by its Swisdrot identifier. A 3D dtructure is also
available for ead sequence Each of the 19 sequences in the family contains two
nucleotide-binding sites (NBS), marked by red letters in Figure 4. T-Coffee was the
only method able to align the two motifs acossall 19 sequences. The large insertion
in kinl yeast prevents the other methods from corredly aigning the second
Nucleotide Binding Site (NBS): Prrp aligned 15 of the 19 moatifs, ClustaW 16,
Dialign 11and Sam 15. The Gibbs sampler (24) was aso run severa times on the full
set of sequences but could never align more than 10 of the motifs (and orly when
provided with an estimate of the total number of blocks in the dignment). Thanks to
its use of locd information, T-Coff ee managed to get all the motifs aligned as in the
reference di gnment. Moreover, T-Coffeewas the only program that corredly aligned
the second NBS of the kp68__human. Sequence kp68_human is an interferon induced
kinase. It is an esential comporent of the viral resporse, adivated by interading with

doule stranded RNA (43) and indwcing an inhibition of protein synthess.

5-Efficiency

The CPU time consumption d T-Coffee was measured. Althoudh some steps are
cubic with the number of sequences (see Methods), these do nd appea to be
computational bottlenedks in the mntext of this work. The graphsin Figure 5 indicae
clealy that the goparent complexity of the program is quadratic, bath relative to the
average sequence lengths (Fig 59) as to the number of sequences (Fig 5b). This
complexity is the same as that of ClustalW, even if in absolute time, the overhea is
dightly higher, which makes our program on average 8 times dower than ClustalW.

For example, T-Coffee was tested with a data-set of 155 sequences having an even

17



phylogenetic spread, an average identity of 15% and an average length of 160
residues. This computation required 60 Megabytes of Memory and 4 hous of CPU-

time on a Pentiuml| processor (330 MH2z).
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DISCUSSION

T-Coffeeis anew progressve methodfor sequence dignment. It can combine signals
from heterogeneous urces (sequence dignment programs, structure alignments,
threading, manual aignment, motifs, spedfic constraints) into a unique @nsensus
multi ple sequence di gnment. We showed here that a combination of locd and dobal
alignments leads to a significant increase in alignment acaracy. The method is more

acarate than its cournterparts and proved succesgul in awide variety of cases.

While making the cnsensus aignment, T-Coffee does not only seled the best
combination d Laign and ClustalW pairwise dignments, but it can generate
improved alternative dignments. The main dfference with traditional progressve
alignment methods is that, instead of using a substitution matrix for aligning the
sequences, a position spedfic scoring scheme is used (the extended library). Thanks
to the extenson process the vaues contained in the library for a given pair of
sequences also depend oninformation from the other sequencesin the set. In this way,
errors are lesslikely to occur during ealy stages of the progressve dignment. As a
consequence, even thoughthe paradigm "once agap always a gap” (11) remains true,

mispladng gaps becmes much lesslikely.

The secnd important feaure of T-Coffee is the combination of locd and dobal
information. Althouch it has long been suspeded that such a mbination was
probably necessary for computing high quality alignments (44), to date no satisfying
formula had been found to addressthis problem efficiently. Through combining locd

and dobal alignments from widely used programs with a new formalism, T-Coffee
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appeasto provide a convincing solution. The end-user benefits from the simplicity of

the method and dces not need to provide any extra parameter values.

A key ingredient of the method is the primary weighting scheme. A short coming of
the arrent use of average sequence identity, is that this tends to overweight small
segments where high similarity is more likely to occur by chance Thisis particularly
significant when weighting shorter segments obtained from aloca alignment program
such as Lalign. The main reason why T-Coffee ca tolerate such ndse is becaise
short high scoring segments are rarely consistent enoughto have astrong effed on the
position spedfic scoring scheme dter extenson. Moreover, final aignments are
proceseed using dyramic programming (progressve dignment). This makes it less
likely for misplaced high scoring segments to affed the alignment. For other
protocols, that incorporate segments in a multiple dignment following a strict order

based ontheir weight (25), such fortuitous ssgments can be amajor pitfall .

Although the protocol proposed here (Lalign + ClustalW pairwise dignments +
Extension) employs a minimal combination of locd and dobal information, there is
no theoreticad limit to the number of methods that can be used. For instance
alignments from structural comparisons could be combined with sequence di gnments.
It is also pasgble to incorporate, in the library, information extraded from multiple
aignments and a scheme ould be designed to allow combination of the main

multi ple sequence dignment methods using the T-Coff ee protocol.
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FIGURE LEGENDS

Figure 1: Layout of the T-Coffee strategy.

This figures outlines the steps required to compute a multiple sequence alignment
using the T-Coffee method. Square Blocks designate procedures while rounded

blocks indicate data ructures (Seetext for detail s).

Figure 2 The Library Extension

a)Primary Library: Dired alignment of sequence A and B using ClustalW (red lines)
and Lalign (black lines). The only constraints reported are those involving residue 6
within sequence A. The red lines indicate congtraints found in a ClustalW pairwise
alignment, the bladk line indicate cnstraints found with Lalign. The numbers in

parenthesis indicate the value of the weight asciated with each constraint.

b)Library Extension: The alignment of A and B through sequence C is caried out and
asociated congtraints are added to the library.
c)Extended Library: The extended library is made of all the weighted constraints

found between A and B. The thicknessof the lines indicae the value of the weight.

Figure 3 Comparison between T-Coffee ad Prrp.

For eat family within BaliBase, the average level of pairwise identity was measured
on the reference alignment. Alignment acairacy was assessd for T-Coffeeand Prrp.
The latter two values were subtraded (%T-Coffee acaracy -%Prrp acaracy) and
plotted versus the arerage BaliBase identity for the family. Dots in the white aea
indicate families where T-Coffee is outperforming Prrp and inversely for the grey

zone. Families have been divided in two sets. below 30 % identity (85 families) and
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above (56 families). The percentages given in the crners of the plot indicate the
fraction of families for which T-Coffee outperforms Prrp (top) and viceversa
(bottom). These percentages do not add yp to hundred as for some families, the same
acaracy was obtained with each method ( e.g. for alignment having lessthan 30% id,
T-Coffee outperforms Prrp in 56% of the caes, Prrp outperforms T-Coffeein 32 %

while both methods draw in 12 % of the cases).

Figure 4 Example of a T-Coffeealignment.

This N terminal alignment of 19 kinases shows two boxes containing the Nucleotide
Binding Site. The residues in capital are annotated as core regions in BaliBase. The
core residues in red are orrectly aligned as respect to the BaliBase reference This

family belongs to BaliBase cdegory 5 (long insertion).

Figure 5 Measure of the T-Coffee @mplexity

a) Effect of the alignment length. CPU time required for computing four-sequence
multiple alignments is measured (32 families) and plotted versus the length of these
multiple alignments.

b) Effect of the number of sequences. Measured CPU time versus the number of
sequences contained in each alignment. All the alignments have an approximate

length of 350residues (between 295and 382.
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