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ABSTRACT

We describe a new method (T-Coffee) for multiple sequence alignment that provides

a dramatic improvement in accuracy with a modest sacrifice in speed as compared to

the most commonly used alternatives. The method is broadly based on the popular

progressive approach to multiple alignment but avoids the most serious pitfalls caused

by the greedy nature of this algorithm. With T-Coffee we pre-process a data set of all

pairwise alignments between the sequences. This provides us with a library of

alignment information that can be used to guide the progressive alignment.

Intermediate alignments are then based not only on the sequences to be aligned next

but also on how all of the sequences align with each other. This alignment

information can be derived from heterogeneous sources such as a mixture of

alignment programs and/or structure superposition. In this paper we ill ustrate the

power of the approach by using a combination of local and global pairwise alignments

to generate the library. The resulting alignments are significantly more reliable, as

determined by comparison with a set of 141 test cases, than any of the popular

alternatives that we tried. The improvement, especially clear with the more diff icult

test cases, is always visible, regardless of the phylogenetic spread of the sequences in

the tests.
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INTRODUCTION

The simultaneous alignment of three or more nucleotide or amino acid sequences is

one of the commonest tasks in bioinformatics. Virtually all proteins belong to

multigene families and there are more and more examples with each protein appearing

as the various genome sequencing projects deliver their data. Multiple alignments are

an essential pre-requisite to many further analyses of protein families such as

homology modeling or phylogenetic reconstruction or are simply used to ill ustrate

conserved and variable sites within a family. These alignments may be further used to

derive profiles (1) or hidden Markov models (2, 3) that can be used to scour databases

for distantly related members of the family.

The automatic generation of an accurate multiple alignment is potentially a daunting

task. Ideally, one would make use of an in depth knowledge of the evolutionary and

structural relationships within the family but this information is often lacking or

diff icult to use. General empirical models of protein evolution (4, 5, 6) are widely

used instead but these can be diff icult to apply when the sequences are less than 30%

identical (7). Further, mathematically sound methods for carrying out alignments,

using these models, can be extremely demanding in computer resources for more than

a handful of sequences (8, 9). In practice, heuristic methods are used for all but the

smallest data sets.

The most commonly used heuristic methods are based on the progressive alignment

strategy (10, 11, 12) with ClustalW (13) being the most widely used implementation.

The idea is to take an initial, approximate, phylogenetic tree between the sequences

and to gradually build up the alignment, following the order in the tree. The sequences
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are aligned singly or in groups, two by two, using dynamic programming (14, 15),

until the alignment is finished. This method has proved successful in a wide variety of

cases and often produces high quality alignments. It does, however, suffer from the

algorithmic greediness inherent in this strategy. The first alignments that are made

may contain errors and these cannot be rectified later as the rest of the sequences are

considered. This directs the alignments into what we refer to as a local minimum (as

distinct from a desired global minimum) using an energy landscape as an analogy. T-

Coffee is an attempt to minimize this effect, and although the strategy we propose

here is also a greedy progressive method, it allows for much better use of information

in the early stages, as we will see later.

The main alternative to progressive alignment is the simultaneous alignment of all the

sequences. The Carill o and Lipman algorithm (8) and MSA (16), its implementation,

allow the simultaneous alignment of up to about 10 sequences. Even here, there are

restrictions on the nature or the gap scoring functions that can be used and some data

sets cannot be aligned if the sequences are too divergent. MSA was recently extended

to larger data sets using a divide and conquer method (17) but remains an extremely

CPU and memory intensive approach. Iterative strategies (18, 19) provide an

interesting alternative, as these might be applicable to relatively large data sets. These

do not provide any guarantees about finding optimal solutions but are reasonably

robust and much less sensitive to the number of sequences than their deterministic

counterparts.

All of these methods attempt to carry out global alignments where one tries to align

the full l engths of the sequences with each other. Alternatively one might wish to

consider local similarity as occurs when two proteins share only a domain or motif.
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For two sequences, there is the well known Smith and Waterman algorithm (20). In

this paper we use Lalign (21), from the FASTA package(22) which is a variant of

Smith and Waterman. It produces sets of non-overlapping local alignments from the

comparison of two sequences. For multiple sequences, MACAW (23) is a semi-

automatic method that produces blocks of alignments shared by all or a subset of the

sequences. The Gibbs sampler (24) and Dialign (25) are the main automatic methods.

These programs often perform well when there is a clear block of ungapped alignment

shared by all of the sequences or where there are blocks of alignment separated by

long insertions or deletions. They perform poorly, however, on general sets of test

cases when compared with global methods ((26,44) and this work). In principle, a

method able to combine the best properties of global and local multiple alignments

might be very powerful. This is the second motivation for the T-Coffee method. We

generate multiple alignments using a combination of global and local alignment

information from each pair of sequences. It provides a simple, flexible and, most

importantly, accurate solution to the problem of how to combine information of this

sort. In this paper, we only consider combining two sources of information. In

principle, there is no limi t to the number of sources that could be used. Accuracy is

tested as overall performance on 141 test case alignments from the BaliBase

collection (26, 27).
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METHODS

T-Coffee (Tree based Consistency Objective Function for alignmEnt Evaluation) is a

general strategy aimed at combining heterogeneous sources of alignment information

into a single multiple sequence alignment. The � � � � � � � �  described here is an eff icient

way to combine sets of local and global pairwise alignments. This set of alignments is

referred to as the primary library (Figure 1). A procedure named matrix extension is

used to convert the primary library into a position specific scoring scheme called the

extended library. This is used to generate the multiple alignment in a progressive

manner, similar to ClustalW.

1-Generating a primary library of alignments

Two types of libraries are used: primary and extended. A primary library may contain

local or global alignments. We use the structure described in (28), which does not

require the alignments to be consistent. This means that it is possible to have several

conflicting alignments in the same library (e.g. two different alignments of the same

sequences). We include, in the library, information for each of the N(N-1)/2 sequence

pairs, where N is the number of sequences. For each pair of sequences, global and

local alignments are included. Global alignments are constructed using ClustalW with

default parameters (version 1.75). Local alignments are the 10 top-scoring non-

intersecting local alignments gathered using Lalign (default parameters) from the

Fasta package (21, 22). It should be stressed that no multiple alignment is computed

for the primary libraries.
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In the library, each alignment is represented as a list of residue pairwise matches (e.g.

Residue x of Sequence A matches Residue y of Sequence B). In effect, each of these

pairs is a constraint. All of these constraints are not equally important. Some may

come from portions of alignments more likely to be correct, for example if there is a

high level of identity between the sequences or a high level of local similarity. An

appropriate strategy must take this into account when computing the multiple

alignment and give priority to the most reliable residue pairs. This can be achieved by

using a weighting scheme.

2-Derivation of the primary library weights

T-Coffee computes a weight for each pair of aligned residues declared in the library

(Figure 2a). An ideal primary weight wil l reflect the correctness of a constraint. We

use sequence identity, a criterion known to be a reasonable indicator of accuracy

when aligning sequences with more than 30% identity (7). It is a weighting scheme

that proved effective for a previous consistency based objective function (28).

Libraries thus generated are lists of weighted pairwise constraints. Each constraint

receives a weight equal to percent identity within the pairwise alignment it comes

from. For each set of sequences, two primary libraries are computed along with their

weights: one with ClustalW (global) and another with Lalign (local).

3-Combination of the libraries

Since our aim is the eff icient combination of local and global information, the pooling

of the ClustalW and Lalign primary libraries is an essential step. The process is

straightforward. If any pair is duplicated between the two libraries, it is replaced with
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a single entry that has a weight equal to the sum of the two weights. This 'stacking' of

the signal is similar to previously described strategies (29, 30, 31). The size of the

resulting library depends on the level of consistency between the two libraries. In the

worst case (i.e. total inconsistency), it equals the sum of their individual sizes. This

primary library can be used directly to compute a multiple sequence alignment.

However, accuracy is improved when internal consistency is taken into account. To

do this, we devised a reevaluation step named library extension.

4-Extending the library

Fitting a set of weighted constraints into a multiple alignment is a well -known

problem, formulated by Kececioglu as an instance of the Maximum Weight Trace, an

NP-complete problem (32). Recently, two heuristic optimization strategies were

proposed (28, 33). The first one relies on a Genetic Algorithm while the second is

based on a graph theoretical method using a branch and bound algorithm. Neither of

these methods is entirely satisfactory. The genetic algorithm (28) is rather robust but

may require prohibitive computation time. The graph theory based algorithm has a

complexity only partially characterized and may fail in some cases for reasons that are

diff icult to predict.

We circumvent the problem by using a heuristic algorithm. We attempt to consider

information from all sequences simultaneously by an approach which we call

extension (Figure 2b). The overall i dea is to combine information in such a manner

that the final constraints for a given pair of sequences reflect some of the information

contained in the whole library. To do so, a triplet approach is used as summarized in

Figure 2b. The strategy bears some similarities with the concept of overlapping
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weights developed in Dialign (25) or the intermediate sequence method proposed by

Neuwald for searching databases (34). It can be explained as follows:

Let us consider 4 sequences A, B, C and D. A(x) is residue x within sequence A, B(y)

the residue y of sequence B and � (A(x), B(y),W) the pair associating these two

residues with a weight W in the library (e.g. A(6) B(14) in Figure 2a). The extension

strategy is shown in Figure 2b. If there exist two pairs � (A(x),C(z),W1) and

� (C(z),B(y),W2), then a new pair � (A(x), B(y),W3) is added to the library. W3 is set

to the minimum of W1 and W2, so that it gets the value of its weakest component

(e.g. a chain always has the strength of its weakest link). We call this new pair an

alignment of A and B through sequence C (A(6) C(15), C(15) B(14) in Figure 2b).

The same process is carried out through sequence D and generally for all triplets

involving sequences A and B. Once the operation is complete, sequence pair A and B

will have gathered information from all the other sequences in the set. This scenario is

repeated for each remaining pair (AC, AD, BC, BD, CD). The complete set of pairs

constitutes the extended library. The worst case complexity of this computation is

(O)N3L2 with L being the average sequence length. However, this will only occur

when all the included pairwise alignments are totally inconsistent. In practice, with

the data sets used here the complexity is closer to (O)N3L.

As pointed out earlier, the extended library can be regarded as a position specific

scoring scheme. For each pair of sequences, it assigns its positive library weight to the

amino acid matches corresponding to library pairs, while matches not expressed in the

library receive a default value of 0. Several algorithms have been proposed for

reconstructing a multiple alignment from lists of weighted constraints (33, 35).
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Unfortunately, these algorithms usually have a high complexity and may have

problems in dealing with noisy data (i.e. incorrect weights). As a more eff icient

alternative, we use progressive alignment with dynamic programming (10, 11, 12).

5-Progressive alignment strategy

In the progressive alignment strategy we use (13), pairwise comparisons are first

made to produce a guide tree using the Neighbor Joining method (36). The

progressive multiple alignment then follows the topology of the guide tree. As used

here, the procedure does not require any additional parameters such as gap penalties.

This stems, in part, from the fact that the substitution values (the library weights) were

computed on alignments where such penalties had already been applied. Further, high

scoring segments that show consistency within the data set see their score enhanced

by the extension to such a point that they become insensitive to gap penalties. In

practice, this means that during the progressive phase, we use a dynamic

programming algorithm (15) with gap opening penalties and gap extension penalties

set to 0 for aligning two sequences or two groups of pre-aligned sequences. The

library replaces a standard substitution matrix.

6-Biological validation of the results

In order to test the accuracy of our method, we used the BaliBase database of multiple

sequence alignments (26, 27). This collection contains 141 protein families. For most

members within each family, a 3D structure is available. The BaliBase multiple

alignments were constructed by manual structure comparison and validated using

structure superposition algorithms such as SSAP (37) or DALI (38). The alignments
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are thus unlikely to be biased toward any specific method. For analysis purposes the

authors have annotated these alignments by marking the columns deemed to be

correctly aligned. Such decisions were made in a conservative manner, only including

blocks for which structural evidence is conclusive. Altogether, these trusted regions

represent 58% of the aligned residues (27). There are five basic categories of

alignments (families) in BaliBase, encompassing most of the situations that arise

when making multiple sequence alignments. The first category is made of

phylogenetically equidistant members. In the second category, each family contains

one orphan sequence with a group of close relatives. The third category contains two

distant groups while the fourth and fifth categories respectively involve long

insertions and deletions. Overall , these 141 test cases constitute one of the most

versatile and sensitive benchmark available today for assessing the accuracy of

multiple sequence alignment methods (26).

Validation is done by comparing a calculated multiple alignment to its counterpart in

BaliBase. The scoring scheme is the percentage of the trusted columns in the

reference that have been correctly aligned. This columnwise comparison has been

described as being more sensitive and discriminating (26) than the alternative

pairwise comparison used by Gotoh (19). This is especially true in the case of

categories 2 and 3 of BaliBase (26).

7-Comparison with other methods

To compare T-Coffee with other methods, multiple alignments of each BaliBase

family were produced with other programs. Four such packages are included in this

study. They cover most of the existing types of algorithms for multiple sequence
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alignment. SAM is a hidden Markov model (HMM) algorithm (39, 40). It attempts to

simultaneously align all the sequences by optimizing the parameters of a hidden

Markov model. Prrp (19) also simultaneously aligns all the sequences, but in an

iterative manner. ClustalW (13) is a progressive alignment method. Dialign2 (35) is a

segment based method that constructs the multiple alignment by assembling a

collection of high scoring segments in a sequence independent progressive manner.

Methods based on multidimensional dynamic programming like MSA (16) or DCA

(17, 41) could not be used in the evaluation as they aborted the construction of

alignments in about 10% of the BaliBase sets. For the alignments that MSA and DCA

could construct, the accuracy was comparable to Prrp. An attempt was also made to

use the Gibbs sampler, a local alignment procedure based on stochastic optimization

methods (24). Unfortunately, it appeared that this method is not really suitable for

most families in BaliBase (lack of well defined ungapped blocks and too few

sequences).

8-Statistical validation

It is critical to establish whether differences observed between two methods are

statistically meaningful. We used the same strategy as Gotoh (19). It involves

applying the Wilcoxon signed matched-pair ranked test on the results obtained with

two methods on the 141 BaliBase families. This non-parametric test allows the

association of a P-value with the differences measured on these two series of results.

This P-value is the probabil ity that the observed differences may be due to chance.

The lower the P-value, the more significant the result.

9-Implementation
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T-Coffee is implemented in ANSI C. It is available on request from the authors and

will be distributed with documentation and examples. For this work, the program was

run on a LINUX platform with a Pentium II processor (330 MHz).
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RESULTS

1-Combining local and global alignments without extension

The effect of combining local and global alignments is shown in Table 1a and b.

Three alternative primary libraries (i.e. without extension) were used to make the

alignments: the ClustalW pairwise library (C), the Lalign pairwise library (L) and

pooling of the ClustalW and Lalign pairwise libraries (CL). The results very clearly

indicate that CL is an improvement over C and L. In each of the five BaliBase

categories, the combination of local and global information induced an improvement

over the two single method-based protocols. On average (Tot in Table 1a), CL is at

least 7.6 percentage points better than C or L. The statistical significance of this result

is confirmed by the Wilcoxon test (Table 1b) as the observed differences between CL

and C or L are associated with P values lower than 0.001. This shows the efficiency of

combining local and global information to make an alignment. Next we ill ustrate the

effect of library extension.

2-Effect of the library extension

The three previously used libraries (C, L, CL) were extended. In all three cases,

extended libraries (CE, LE, CLE) induced improved performance when compared to

their non-extended counterparts (C, L, CL) (Table 1a). These differences in

performance, all highly significant (Table 1b), show that library extension always

results in an improvement, regardless of the BaliBase category (Table 1a). Most

importantly, CLE significantly outperforms all the alternative protocols in all cases.

Table 1a also shows that the performance of CLE is highly sustained. It is consistently
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the best protocol and enhances the alignment accuracy with values between 3.2 and

5.7 percentage points over the next best. In contrast, the second best protocol varies

over the BaliBase categories (CE in Cat. 1 and 2, CL for Cat. 3, LE in Cat. 4 and Cat.

5). This clearly indicates that the library extension greatly improves the abilit y of the

algorithm to handle a wide range of situations.

These results show that the combination of local (Lalign) and global (ClustalW)

information boosts the quality of multiple alignment. Table 1b indicates that the CLE

protocol is outperformed by the second best protocol (CL) in less than 12% of the

cases, as assessed over 141 BaliBase families. It should be stressed that to obtain

these results, no training or fine-tuning of the parameters was performed. The

parameters used for Lalign and ClustalW were the defaults, published by the authors

in versions that predate BaliBase by more than a year.

3-Comparing T-Coffee with other multiple sequence alignment methods

The protocol used to assess the five methods (SAM, Dialign, ClustalW, Prrp and T-

Coffee (CLE)) is identical to that described in the previous section and the results are

organized in a similar layout (Table 2a and 2b).

Table 2a and b indicate that Prrp slightly outperforms ClustalW (P value: 0.02). The

difference confirms the results reported by Gotoh (42) with Prrp being the second best

method in four out of five categories. Categories 4 and 5 involve families of proteins

with long N/C terminal extensions, where one would expect local alignment methods

to perform well. Indeed, Dialign2 outperforms all the global methods (apart from T-

Coffee) in category 4 and is a close competitor to Prrp for category 5. The results for
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category 4 also indicate that although ClustalW is never the best method, its

performance is well sustained over various BaliBase categories.

T-Coffee (CLE protocol) shows the highest average accuracy in each BaliBase

category. In these five categories, all the observed differences between T-Coffee and

the other methods are associated with P values lower than 0.01. For example, the

average difference in accuracy between T-Coffee and its closest competitor (Prrp) is

nearly 6 percentage points, associated with a highly significant P-value of 0.003

(Table 2a, Total1). The unweighted average over the five categories (Table 2a,

Total2) is even more dramatic with a 9.7 percentage points better performance for T-

Coffee.

Most of the improvement with T-Coffee tends to concentrate in the BaliBase

alignments having a low level of average identity. Figure 3 follows the representation

proposed by Gotoh for comparing two methods (19) and shows that the alignments

for families with less than 30 % average sequence improve the most. At this low

identity level, there is a more than 2/3 chance to obtain the best alignment when using

T-Coffee rather than Prrp.

4-Application to Serine/Threonine kinases

A major application of any alignment algorithm will be the delineation of motifs or

domains. These elements are crucial for an in-depth understanding of sequence

function. Their correct identification can be crucial for homology modeling or drug

design. In Figure 4 we show an example that ill ustrates the usefulness of T-Coffee for

identifying functional features of a series of kinases taken from BaliBase. These
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proteins belong to a subfamily of protein Serine/Threonine kinases. Each sequence

(apart from gcn2) is identified by its SwissProt identifier. A 3D structure is also

available for each sequence. Each of the 19 sequences in the family contains two

nucleotide-binding sites (NBS), marked by red letters in Figure 4. T-Coffee was the

only method able to align the two motifs across all 19 sequences. The large insertion

in kin1_yeast prevents the other methods from correctly aligning the second

Nucleotide Binding Site (NBS): Prrp aligned 15 of the 19 motifs, ClustalW 16,

Dialign 11 and Sam 15. The Gibbs sampler (24) was also run several times on the full

set of sequences but could never align more than 10 of the motifs (and only when

provided with an estimate of the total number of blocks in the alignment). Thanks to

its use of local information, T-Coffee managed to get all the motifs aligned as in the

reference alignment. Moreover, T-Coffee was the only program that correctly aligned

the second NBS of the kp68_human. Sequence kp68_human is an interferon induced

kinase. It is an essential component of the viral response, activated by interacting with

double stranded RNA (43) and inducing an inhibition of protein synthesis.

5-Efficiency

The CPU time consumption of T-Coffee was measured. Although some steps are

cubic with the number of sequences (see Methods), these do not appear to be

computational bottlenecks in the context of this work. The graphs in Figure 5 indicate

clearly that the apparent complexity of the program is quadratic, both relative to the

average sequence lengths (Fig 5a) as to the number of sequences (Fig 5b). This

complexity is the same as that of ClustalW, even if in absolute time, the overhead is

slightly higher, which makes our program on average 8 times slower than ClustalW.

For example, T-Coffee was tested with a data-set of 155 sequences having an even
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phylogenetic spread, an average identity of 15% and an average length of 160

residues. This computation required 60 Megabytes of Memory and 4 hours of CPU-

time on a PentiumII processor (330 MHz).
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DISCUSSION

T-Coffee is a new progressive method for sequence alignment. It can combine signals

from heterogeneous sources (sequence alignment programs, structure alignments,

threading, manual alignment, motifs, specific constraints) into a unique consensus

multiple sequence alignment. We showed here that a combination of local and global

alignments leads to a significant increase in alignment accuracy. The method is more

accurate than its counterparts and proved successful in a wide variety of cases.

While making the consensus alignment, T-Coffee does not only select the best

combination of Lalign and ClustalW pairwise alignments, but it can generate

improved alternative alignments. The main difference with traditional progressive

alignment methods is that, instead of using a substitution matrix for aligning the

sequences, a position specific scoring scheme is used (the extended library). Thanks

to the extension process, the values contained in the library for a given pair of

sequences also depend on information from the other sequences in the set. In this way,

errors are less likely to occur during early stages of the progressive alignment. As a

consequence, even though the paradigm "once a gap always a gap" (11) remains true,

misplacing gaps becomes much less likely.

The second important feature of T-Coffee is the combination of local and global

information. Although it has long been suspected that such a combination was

probably necessary for computing high quality alignments (44), to date no satisfying

formula had been found to address this problem eff iciently. Through combining local

and global alignments from widely used programs with a new formalism, T-Coffee
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appears to provide a convincing solution. The end-user benefits from the simplicity of

the method and does not need to provide any extra parameter values.

A key ingredient of the method is the primary weighting scheme. A short coming of

the current use of average sequence identity, is that this tends to overweight small

segments where high similarity is more likely to occur by chance. This is particularly

significant when weighting shorter segments obtained from a local alignment program

such as Lalign. The main reason why T-Coffee can tolerate such noise is because

short high scoring segments are rarely consistent enough to have a strong effect on the

position specific scoring scheme after extension. Moreover, final alignments are

processed using dynamic programming (progressive alignment). This makes it less

likely for misplaced high scoring segments to affect the alignment. For other

protocols, that incorporate segments in a multiple alignment following a strict order

based on their weight (25), such fortuitous segments can be a major pitfall .

Although the protocol proposed here (Lalign + ClustalW pairwise alignments +

Extension) employs a minimal combination of local and global information, there is

no theoretical limit to the number of methods that can be used. For instance,

alignments from structural comparisons could be combined with sequence alignments.

It is also possible to incorporate, in the library, information extracted from multiple

alignments and a scheme could be designed to allow combination of the main

multiple sequence alignment methods using the T-Coffee protocol.
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FIGURE LEGENDS

Figure 1: Layout of the T-Coffee strategy.

This figures outlines the steps required to compute a multiple sequence alignment

using the T-Coffee method. Square Blocks designate procedures while rounded

blocks indicate data structures (See text for details).

Figure 2 The Library Extension

a)Primary Library: Direct alignment of sequence A and B using ClustalW (red lines)

and Lalign (black lines). The only constraints reported are those involving residue 6

within sequence A. The red lines indicate constraints found in a ClustalW pairwise

alignment, the black line indicate constraints found with Lalign. The numbers in

parenthesis indicate the value of the weight associated with each constraint.

b)Library Extension: The alignment of A and B through sequence C is carried out and

associated constraints are added to the library.

c)Extended Library: The extended library is made of all the weighted constraints

found between A and B. The thickness of the lines indicate the value of the weight.

Figure 3 Comparison between T-Coffee and Prrp.

For each family within BaliBase, the average level of pairwise identity was measured

on the reference alignment. Alignment accuracy was assessed for T-Coffee and Prrp.

The latter two values were subtracted (%T-Coffee accuracy -%Prrp accuracy) and

plotted versus the average BaliBase identity for the family. Dots in the white area

indicate famil ies where T-Coffee is outperforming Prrp and inversely for the grey

zone. Famil ies have been divided in two sets: below 30 % identity (85 families) and



28

above (56 families). The percentages given in the corners of the plot indicate the

fraction of families for which T-Coffee outperforms Prrp (top) and vice-versa

(bottom). These percentages do not add up to hundred as for some families, the same

accuracy was obtained with each method ( e.g. for alignment having less than 30% id,

T-Coffee outperforms Prrp in 56% of the cases, Prrp outperforms T-Coffee in 32 %

while both methods draw in 12 % of the cases).

Figure 4 Example of a T-Coffee alignment.

This N terminal alignment of 19 kinases shows two boxes containing the Nucleotide

Binding Site. The residues in capital are annotated as core regions in BaliBase. The

core residues in red are correctly aligned as respect to the BaliBase reference. This

family belongs to BaliBase category 5 (long insertion).

Figure 5 Measure of the T-Coffee complexity

a) Effect of the alignment length. CPU time required for computing four-sequence

multiple alignments is measured (32 families) and plotted versus the length of these

multiple alignments.

b) Effect of the number of sequences. Measured CPU time versus the number of

sequences contained in each alignment. All the alignments have an approximate

length of 350 residues (between 295 and 382).


