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alignment to the rest of the sequence; as few mismatches are usually 
allowed in the seed, this approach provides good performance but 
is also inflexible and incapable of returning all existing matches.

As the needs of the field are rapidly shifting, the assump-
tions described above are now constantly challenged. Some  
current biological problems (such as nonmodel-organism studies  
for which matching reference sequences might be incomplete, 
inaccurate or missing, or cross-species comparisons in evo-
lutionary studies2) and new experimental protocols (data in 
color space, bisulfite-converted sequences or RNA sequencing3) 
require a higher tolerance to errors or more flexible alignment 
models4,5. Other applications (prediction of genomic variation or 
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Because of ever-increasing throughput requirements of 
sequencing data, most existing short-read aligners have  
been designed to focus on speed at the expense of accuracy. 
The Genome Multitool (GEM) mapper can leverage string 
matching by filtration to search the alignment space more 
efficiently, simultaneously delivering precision (performing 
fully tunable exhaustive searches that return all existing 
matches, including gapped ones) and speed (being several 
times faster than comparable state-of-the-art tools).

In recent years, the superexponential increase in worldwide 
sequencing capacity1 has driven a substantial amount of research 
into the development of efficient algorithms for the analysis of 
short-read sequence data. In particular, rapid alignment of reads 
to a genomic reference is often essential. Most mappers have been 
designed and optimized assuming very short reads (≤100 nt), 
small deviations from the reference and predominant interest in 
reads having a unique match or few matches. When a user selects 
alignment parameters that make the programs deviate from such 
assumptions, they become considerably less accurate, slower or 
both. In addition, mappers typically work on a seed-and-extend 
basis in which a read is aligned by first finding in the reference a 
short token of the sequence (the ‘seed’) and then extending the 
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Figure 1 | Salient points of our algorithmic approach. (a) An example of 
region-based adaptive filtering. We aligned the read ATGTTAC to the toy 
genome CATGGAACTTATCTCACAGCCTTT allowing, at most, two nucleotide 
substitutions with a ‘computational budget’ of t = 3 (Online Methods). 
Region 1 (string AC) identifies two candidates at positions 7 and 16, 
and region 3 (string AT) identifies two candidates at positions 2 and 
11. Region 2 (string GTT) does not identify any candidate. The final 
matches can be found at positions 2 and 11. (b) Algorithm for paired-end 
mapping. If the option ‘–b’ (always map both ends) is set, pairs will  
be collected from paths B and C (first workflow; Online Methods);  
if this option is not set, pairs will be collected from paths A and C  
(second workflow). If the extension parameters are at least as permissive 
as the alignment parameters, both workflows are guaranteed to find all 
the paired-end matches such that both ends considered separately map 
within the specified alignment parameters.
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metagenomics6,7) exploit exhaustive searches of possible matches 
to increase mapping reliability; in such cases, seed-and-extend 
alignment is not sufficient.

The concept of ‘good alignment’ depends on the definition of a 
string distance between the sequence read and any of its matches 
in the reference. Mappers usually adopt simple distances enumer-
ating substitutions (Hamming) or edit operations (Levenshtein)8, 
but they still present a wide variety of algorithmic setups and 
scoring schemes. Sometimes such setups are complicated, for 
example, if their definition can only be understood in terms of 
the implementation, or even arbitrary, as in the case of the unique 
alignment modes of several popular mappers such as Bowtie9 
and Burrows-Wheeler Aligner (BWA)10; when a read maps  
multiple times, these mappers break the tie by returning a ran-
domly selected match. Regardless of the definition of a string dis-
tance used, however, one can always partition possible alignments 
to the reference into strata, meaning sets of matches that are all 
the same distance from the read (Supplementary Discussion 
and Supplementary Fig. 1). The strata exploration policy deter-
mines the tradeoff between accuracy and computational cost of 
alignment. Exhaustive alignment algorithms, such as Micro-read 
Substitution-only Fast Alignment Search Tool (MrsFAST)7 and 
GEM, fully explore strata, whereas nonexhaustive algorithms  
follow a more complicated path, possibly skipping portions of the 
search space for each read. However, if an exhaustive search is not 
performed, as in the default alignment models of Bowtie, Bowtie2 
(ref. 11) and BWA, it is not possible to make certain statements 
about the number of matches within a given distance. In parti
cular, it is impossible to decide whether a read is unique or not 
(this limitation remains true even if the tool offers a probabilistic 
score to quantify the likelihood of the match).

Here we present our approach to short-read alignment, 
the GEM mapper. Unlike most other mappers, GEM adopts a 
filtration-based approach to approximate string matching12: 
all relevant candidate matches are extracted from a Ferragina-
Manzini index by suitable pigeonhole-like rules and refined 

by dynamic programming in bit-compressed representation13 
(Online Methods and Fig. 1). This strategy to prune the search 
space without missing matches, primed with careful optimiza-
tions, confers several advantages to the GEM method. First, 
regardless of alignment parameters, the mapper always per-
forms complete searches: they respect interstrata boundaries and 
exhaustively find all matches that exist within the search space. 
Second, the speed of GEM is comparable to or faster than that of 
several currently used state-of-the-art aligners (Figs. 2 and 3); in 
addition, filtering-based pruning scales well to the range of longer 
reads targeted by the latest sequencers. Third, because of the  
flexibility of our algorithmic setup, we implemented an innovative 
versatile design that allows the user to accurately specify complex 
alignment models tuned to a specific biological problem.

GEM can also find gapped matches. Not only does GEM report 
the ‘best’ matches (those with minimum alignment penalty), it can 
also explore a tunable number of match strata, effectively resulting 
in a variable-depth mapping scheme that is adapted to each read 
(and always outputs separate reliable match counts for each stratum). 
GEM can perform full paired-end (Fig. 1b), quality-aware align-
ment. Sometimes GEM can replace entire blocks of low-quality 
nucleotides as wildcards at no additional computational cost, even 
beyond the nominal number of maximum allowed substitutions, thus 
typically mapping 70–80% of the Illumina reads containing uncalled 
bases and passing quality controls. In addition, GEM also imple-
ments several special ‘hyperfast’ modes in which it only aligns reads 
that, according to a chosen algorithmic criterion, require a small 
amount of computational resources to be mapped (Online Methods). 
Notably, such modes differ from the heuristic modes offered by most 
popular aligners, as the latter can unpredictably miss matches for any 
read, but all the reads aligned by the GEM fast modes are aligned 
exhaustively. Empirically, most present-day reads are easily alignable, 
whereas the reads that are difficult to align are often the same ones 
for which regular modes would also not find matches; hence, this 
strategy can map more reads for the same computational budget, 
as available resources can be concentrated on reads that benefit  
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bFigure 2 | Benchmarking the GEM mapper on real 
Illumina GA IIx and Roche 454 sequencing data. 
(a) Fraction of reads mapped by some of the 
alignment tools and configurations benchmarked 
in Supplementary Table 3, for real GA IIx 
paired-end reads (36–150 nt). m, mismatches 
(Online Methods). (b) Relative speedups of GEM 
with respect to the mappers benchmarked in 
Supplementary Table 3, for GA IIx reads as in 
a (in each case GEM was run with an alignment 
setup that matched that of the other mapper 
as closely as possible). (c) Fraction of reads 
mapped by some of the alignment tools and 
configurations benchmarked in Supplementary 
Table 1 for real 454 single-end reads (572 nt 
average). BWA-SW, BWA–Smith-Waterman.  
(d) Relative speedups of GEM with respect to the 
mappers benchmarked in Supplementary Table 1 
for 454 reads as in c (in each case, GEM was run 
with an alignment setup that matched to that of 
the other mapper as closely as possible; several 
configurations for each tool were considered).  
e, fast = 0, fast, very-fast, sensitive, very-
sensitive, z = 1, z = 2, z = 3 and s = 1 are command- 
line parameters (see Supplementary Protocol).
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from them. In addition, GEM embeds a fast ‘unique-mapping’ mode 
to be used with protocols that discard ambiguous reads (aligning the 
reads having only one exhaustive match in the reference and flagging 
the remaining reads as multiply mapping).

Typical results for the GEM mapper on real data from Homo 
sapiens (sets of Illumina GA IIx reads of 36–150 nt and Roche 454 
reads with an average length of 572 nt; Supplementary Protocol) 
are reported in Supplementary Tables 1–3 and Figure 2 together 
with corresponding benchmarks for several popular aligners. As 
GEM allows virtually all the relevant alignment parameters to 
be tuned, we performed fair comparisons by always mirroring 
the setup of the other mapper (Supplementary Protocol). For 
example, focusing on Illumina reads (Fig. 2a,b) at the typical 
length of 100 nt, four general conclusions are apparent. First, 
GEM is very fast in absolute terms: when using the BWA defaults 
as alignment parameters, GEM aligned about 40 million single-
end reads per central processing unit core per hour on our test 
machine in paired-end mode. Second, when run with comparable 
parameters, GEM is typically much faster than other popular 
mappers. It is 18 times faster than MrsFAST (when run with no 
insertions-deletions (indels) allowed and all matches in all strata 
reported). It is six times faster than Bowtie and Bowtie2 run in 
the low-precision mode that stops after the first match; it takes 
GEM less time to perform a full search than it takes for Bowtie 
or Bowtie2 to find a single match. GEM is five times faster than 
BWA run in its default heuristic mode (and with this choice of 

parameters, GEM will report all the existing matches, whereas 
BWA misses some of them). GEM is about two times faster than 
Short Oligonucleotide Alignment Program 2 (SOAP2)14 but 
reports more matches (because of hard-coded limitations on the 
number of allowed mismatches, SOAP2 is fast but has limited 
sensitivity). Third, in all considered comparisons, GEM always 
aligned more reads than its competitors (only BWA and Bowtie2 
gave a similar number of results but were also several times slower 
than GEM). Fourth, the performance of hyperfast mapping modes 
is noteworthy. When aligning at BWA defaults, the basic fast mode 
maps only 0.2% fewer reads than does the full mode but runs 
twice as fast (a more sensitive fast setup, with a Levenshtein dis-
tance of 8% instead of 4%, gives a similar speedup and aligns ~1% 
more reads). We found analogous results with 454 data, for which 
GEM mapped more reads and was several times faster than its  
competitors, being about three to five times faster than Bowtie2 
and two to four times faster than BWA–Smith-Waterman15  
(Fig. 2c,d), even though in this test both Bowtie2 and BWA–Smith 
Waterman, but not GEM, reported only one match per read. In 
addition, our filtration-based algorithms scale weakly with respect 
to the read length (behaving much more like the seed-and-extend 
strategy of Bowtie2 than the exhaustive searches of MrsFAST;  
Fig. 2b and Supplementary Tables 3 and 4).

By aligning simulated data sets (generated using the same pro-
cedure10 originally used to evaluate Bowtie2; Supplementary 
Protocol), we also confirmed that the GEM mapper is very 
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Figure 3 | Several accuracy benchmarks for the GEM mapper on simulated Illumina GA IIx and Roche 454 sequencing data. (a–d) Fraction of mapped 
reads as a function of mapping time (left) for several tools and configurations of alignment parameters (each point in the plots corresponds to a line in 
Supplementary Table 6 for GA IIx reads and Supplementary Table 4 for 454 reads). Two measures of accuracy as a function of mapping time (right) for 
the same tools and configurations shown on the left. Avg., average. The measure ‘correct’ is the fraction of reads for which the simulated location was 
correctly retrieved by the mapper as any of the alignments that were output for the read; the measure ‘first correct’ is the fraction of reads for which 
the simulated location was correctly retrieved by the mapper as the first (or best) alignment output for the read. When only one alignment per read was 
reported in the mapping configuration corresponding to a point, the two measures coincide, and this is indicated in the legend. Only a few of the fastest 
configurations are plotted for each mapper. In b, times are plotted on logarithmic scale. 
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accurate in absolute terms and more accurate than other popular 
aligners (Fig. 3 and Supplementary Tables 4–6). For all consid-
ered data sets, GEM recovered as the ‘best match’ a higher fraction 
of correct locations, and it typically did so several times faster 
than its competitors when considering configurations that pro-
vide comparable precision. Even when the simulated location was 
not retrieved as the first match, GEM output it as a subsequent 
match in virtually all cases.

We argue that the GEM mapper’s precision, speed and  
scaling to higher read lengths are essential for coping with the 
ever-increasing flood of genomic short-read information and for 
better problem-driven data analyses, ultimately leading to higher-
quality biological insights.

The GEM programs are free for academic noncommercial use 
and can be downloaded from http://gemlibrary.sourceforge.net.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Overview. Most popular mappers16 rely on either hash-table 
indexing or Ferragina-Manzini indexing17,18, which is based on 
the Burrows-Wheeler transform (BWT), as their basic searching 
scheme. GEM adopts the latter, enabling more flexible searches 
and having a smaller memory footprint (depending on the 
parameters used at generation time, the typical size of a GEM 
index ranges from 3 GB to 6 GB for H. sapiens). Being careful 
enough, however, one is usually able to craft implementations 
that are largely independent of the basic indexing scheme used. 
Conversely, when trying to align with errors a sequence read to a 
large reference, the match space that needs to be explored can be 
huge, in particular if the alignment model is complex (for example,  
when it includes gaps or more than one stratum); it therefore 
becomes essential to specify a good strategy to prune the search. 
Hence, the major determinant of the final accuracy and perform-
ance of an alignment algorithm is usually the high-level pruning 
strategy used rather than the basic indexing scheme. In particular, 
some pruning strategies (such as the seed-and-extend strategy) 
can potentially miss matches for each read, whereas others do not 
have this limitation.

Here we briefly describe the key principles underlying our 
approach to effective search pruning. Our approach is based 
on the combination of two ideas: filtering-based approximate 
string matching13 and a powerful method to determine filtering  
segments (previously unpublished, to the best of our knowledge) 
that we call region-based adaptive filtering.

We note that our current implementation is not based on the 
bidirectional BWT: rather than indexing both the sequence of the 
reference and its reverse, as the vast majority of existing BWT-
based aligners do9–11,14, we only store the sequence alone. This 
indicates that, although helpful, the bidirectional BWT is not 
necessary to attain excellent mapping performance.

Filtering-based approximate string matching. In its basic  
incarnation, filtering is a simple strategy. It consists of a few steps, 
as follows: (i) The query Q: = Q1...Qn is divided into s nonover-
lapping segments. (ii) For each segment si, all the corresponding 
matches up to some distance di are retrieved. (iii) Each match 
for a segment is verified against the entire query. (iv) The non
redundant matches are identified and reported.

The number of segments s, the way the query is subdivided 
into segments (the intervals [Q1,L : Q1,R], ..., [Qs,L : Qs,R]) and the 
vector d of the mismatches or differences to be placed in each 
segment determine speed and accuracy of the query. The query is 
said to be exhaustive up to some string distance when the choice 
of d guarantees that all the matches up to that distance are found.  
(For simplicity, in the next discussion we consider a number of 
substitutions, m, rather than some more complicated string dis-
tance, but the results presented here can be extended to more 
general definitions of local error.)

A common way of setting up an exhaustive filtered query up 
to m mismatches is by (i) taking segments all having the same 
length, (ii) considering exactly m + 1 of them and (iii) consider-
ing as candidates only the exact matches for each segment, or, 
in other words, taking a vector d = (0,...,0). With such a choice, 
the pigeonhole principle8 guarantees that all the matches up to 
m mismatches will be automatically found, as it is impossible to 
distribute m mismatches into m + 1 slots without leaving at least 

one hole (that is, one segment without mismatches). This setup 
is natural when using Ferragina-Manzini–like indexing, which 
provides very fast exact searches18.

It follows from our definitions that the efficiency of the search 
will crucially depend on the total number of candidate matches 
one has to examine; in turn, the number of candidates will depend 
on the chosen interval configuration. For instance, when perform-
ing standard exhaustive filtering as described above, the higher 
the number of mismatches m, the more intervals one needs to 
consider; if the number of segments is too high with respect to 
the length of the query, then the segments will be too short, and 
the number of candidates originating from at least some of them 
will be prohibitive. In general, depending on the sequence of the 
query, the number of candidates generated by each segment can 
be very different.

However, the filtering framework is very flexible, and it is not 
necessary to limit oneself to standard filtering. For instance, the 
pigeonhole principle can be extended by allowing searches with 
more than zero mismatches; all the matches within at most m 
mismatches from the reference will still be obtained, provided 
that m/d mismatches are allowed in each segment (d = |d| is 
the number of segments here). If this number is kept low (for 
example, 0 ≤ m/d ≤ 2), then the empirical cost of the search can 
be even lower than that of a standard filter without sacrificing the 
possibility of enumerating all matches. As the generalized pigeon-
hole principle applies to more complicated local error definitions 
as well, a filtering scheme lends itself almost equally as well to 
accommodating indels into searches. In addition, in this scheme, 
one can efficiently implement variable-depth mapping (and the 
possibility of specifying a tunable number of strata to be explored 
in addition to the best one) by using the matches already found 
to better locate the strata of interest.

Our current GEM implementation relies on several layers 
of optimization to create a robust and efficient filtering-based 
framework. At both the design and implementation stages, we put 
particular emphasis on several requirements, namely (i) always 
ensuring exactness by enforcing pigeonhole-like rules, (ii) being 
able to perform variable-depth searches and (iii) being able to 
climb to an intermediate number of mismatches without exces-
sive slowdowns.

Region-based adaptive filtering. Depending on the length scale 
considered, each sequencing read can be considered as a con-
catenation of several subsequences, each one being more or less 
repetitive, that is, having a larger or smaller number of matches in 
the genome. Naive setups such as the standard filtering described 
above, which divides the read into equally sized segments, do not 
exploit the full power of filtering; some of the segments might 
yield many candidate matches that need to be checked, thus lead-
ing to inefficient alignment. Hence, a way of determining a filter-
ing configuration that can be adapted to each read is needed if one 
wishes to obtain good results; however, how to do this optimally 
is an open problem and an actively researched one. In this section 
we briefly describe our solution.

We first pick up a threshold t, which describes the maximum 
number of candidates we are willing to consider for each filter-
ing segment (our computational budget). We then start scan-
ning the read backward (that is, from right to left, coherently 
with our Ferragina-Manzini index setup; however, the method 
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would work equally well if applied to an ordinary left-to-right 
forward search), adding one character more to the current region 
each time and noting the number of candidates in the reference 
that correspond exactly to the string being formed. Each time 
the number of matches falls below the threshold, we start a new 
region. An example is illustrated in Figure 1a, where t has been 
set to 3; region 1 initially corresponds to string C (with seven 
candidates present in the genome) and then is extended to AC 
(with two candidates). As the number of candidates is now below 
the threshold, we close the region after AC and restart a new one. 
Going on with this procedure, we are able to identify three regions 
in the read (from right to left: AC with two candidates, GTT with 
zero candidates and AT with two candidates).

Of note, by definition such a procedure guarantees that the 
number of candidates to be considered per filtering segment 
will always be less than the threshold; in addition, this algorithm 
can be implemented straightforwardly in the Ferragina-Manzini 
indexing framework. However, the method does not give any 
guarantee about the number of regions that will be identified, 
and this complicates things if one wishes to implement an exhaus-
tive mapping scheme by enforcing pigeonhole-like rules. For 
instance, in the example of Figure 1a, we obtained three regions. 
In such a case, one is guaranteed to find all the matches up to two 
mismatches by just validating the exact matches found for each 
segment identified. In less favorable cases, however, when the 
number of regions is less than m + 1, one might have to consider 
as candidates the matches obtained when allowing for more than 
zero mismatches in each segment, ultimately leading to a com-
putationally more expensive search.

Empirical experience shows that the vast majority of single-
end reads are easily alignable according to the method described 
above, allowing them to be mapped in a fast and exhaustive way. 
The fast modes described in the main text leave out reads for 
which the method is unable to identify a sufficient number of 
regions and align the others.

Match verification and gapped mapping. Once filtering seg-
ments are efficiently determined using our adaptive procedure, we 
verify candidate matches using Myers’ fast bit-vector algorithm19 
to align the read against each candidate position in the index. 
This algorithm uses a bit-compressed representation of a dynamic 
programming table20; less memory is required to store the table, 
and single steps of the dynamic programming algorithm can be 
performed over several elements of the table at the same time 
using a single arithmetic-logic operation.

It should be noted that the alignment parameters specified 
when filtering and those used during this stage are independent. 
In particular, when one uses more permissive parameters during 
match verification—which is often the case, as it allows for long 
indels to be found—the degree of exhaustiveness of the query is 
still determined by filtering parameters.

In general, with such a technique, the sum of the lengths of the 
reported indels will be limited by either the read length (when 
performing candidate verification) or the maximum allowed 
insert size (when performing extension followed by alignment).

The GEM output scoring scheme. The set of matches retrieved 
by the GEM mapper is constrained by the alignment parameters 
specified on the command line; because our algorithms are 

exhaustive, they guarantee that all the matches within the speci-
fied Hamming or Levenshtein distance will be found. GEM does 
not internally use, at any time, partial likelihood scores to elimi-
nate alignment branches that seem potentially unproductive. 
Hence, in the GEM output, we might naturally sort and stratify 
alignments by increasing Levenshtein distance.

However, because of biological considerations, we adopted a 
slightly different output scoring scheme. Given the usual assump-
tion that the genome of the organism being resequenced shares a 
high degree of similarity with that of the reference, the differences 
observed in short sequence reads can ultimately arise because 
of either sequencing errors or relatively small genomic variants 
(SNPs or indels). Consequently, the GEM mapper sorts align-
ments in the output by assigning to each nucleotide substitution 
a penalty of +1 (as do most mappers) and to each indel, regardless 
of its length, a penalty of +1. The rationale for the latter is that, in 
most cases, it makes sense to consider each short indel as a single  
‘event’ originated by either a rearrangement in the genome 
or a sequencing error. For instance, in the output of the GEM  
mapper, an alignment having a single deletion of three bases and 
an alignment having a single deletion of six bases will seem to 
belong to the same stratum.

We understand that our choice is quite arbitrary, but we note 
again that this scoring scheme only influences the sorting of the 
results in the output and not the nature of the reported align-
ments. If a different criterion is preferable, the user can easily 
rescore and resort the matches later by using, for example, other 
programs of the GEM toolkit (Supplementary Data).

Strategies for paired-end mapping. To achieve sensitive 
and effective paired-end alignment, GEM can refine single-
end alignments (obtained by means of filtration, as explained 
above) through dynamic programming. By ‘refinement’, we are 
referring to a combined inter-end gap extension and dynamic 
programming–based alignment step. In Figure 1b we show in 
more detail the two paired-end mapping workflows currently 
implemented in the GEM mapper.

The first workflow begins by separately mapping both ends and 
then pairs the returned single-end matches while respecting the 
constraints imposed by relative distance and orientation (path B 
in Fig. 1b). If no paired-end match can be found in this way, the 
program extends the single-end matches previously obtained for 
either end by dynamic programming using the same Myers algo-
rithm explained above (path C). The second workflow begins by 
mapping only one end and then extends the matches for the first 
end to the second end through dynamic programming (path A). If 
no match is found, the second end is also mapped, and an exten-
sion of the matches found to the first end is attempted (path C).

In practice, the implementation of the two workflows is more 
complicated and corresponds to what is illustrated in Figure 1b. 
Not only are the workflows intertwined, but some optimizations 
are also performed (for instance, when the first end is very repeti-
tive and many single-end matches are found for it, it is typically 
faster to map the second end and proceed to direct pairing even 
if the second workflow is being used).

Under the reasonable assumption that extension parameters 
are at least as permissive as mapping parameters, both workflows 
are guaranteed to find all the good-quality alignments for which  
both ends of the pair lie within the specified mapping parameters. 
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Such alignments are produced by path B (separate mapping of 
both ends followed by direct pairing) in the case of the first work-
flow and by paths A and C (mapping of one end followed by 
extension to the other end) in the case of the second workflow. 
In addition, the first workflow can also align (from path C) the 
reads having only one mappable end, provided that the other end 
can be found by extending with more permissive parameters the 
matches for the first one.

Generally speaking, the second workflow requires a proper 
tuning of the extension parameters; a reasonable estimate of the 
insert size is needed, which is not available, for instance, when 
studying structural variations or aligning reads to assembly  
contigs. Adjusting the number of extensions performed per match 
to the insert size might also be important to attain better precision 
(Supplementary Table 6). However, under ordinary conditions, 
the second workflow is faster, as typically one has to single-end 
map only one of the two ends, and the extension step is sub
dominant (as rows 19–22 of Supplementary Table 3 effectively 
illustrate). Conversely, the first workflow, despite being slower, can 
be used to retrieve pairs when one of the two ends contains more 
errors; this workflow might also be preferable when it is conven-
ient to possess separate alignment lists for both ends (for instance, 
some programs to find structural variations might require this 
kind of input). Additionally, in some rare situations, such as align-
ment to very repetitive regions of the genome, it is theoretically 

possible that direct pairing is faster than extension, and, hence,  
the first workflow would be more efficient than the second.

Other commodities. Through suitable preprocessing of the 
input, the GEM mapper can be used to align color-space reads 
produced by ABI SOLiD platforms21. In addition, several ancillary 
tools are provided to simplify the post-processing of the results 
(Supplementary Data). A first tool transforms files in the GEM 
output format, performing operations such as rescoring and selec-
tion of matches, pipelining of several mapping stages, merging of 
files and so on. A second tool converts the output of GEM into a 
PICARD-compliant (http://picard.sourceforge.net) subset of the 
Sequence Alignment/Map (SAM) format22. Despite the ubiquity of 
SAM, this conversion is left to the user as an optional step because 
it entails a loss of information (some of the features of the GEM 
format are not representable in SAM) and the result is bulkier.

16.	 Li, H. & Homer, N. Brief. Bioinform. 11, 473–483 (2010).
17.	 Burrows, M. & Wheeler, D.J. Technical Report 124 (Digital Equipment 

Corporation, Palo Alto, California, 1994).
18.	 Ferragina, P. & Manzini, G. in Proceedings of the 41st Symposium on 

Foundations of Computer Science (FOCS 2000) 390–398 (2000).
19.	 Myers, E.W. JACM 46, 395–415 (1999).
20.	 Eddy, S.R. Nat. Biotechnol. 22, 909–910 (2004).
21.	 The Tomato Sequencing Consortium. Nature 485, 653–641 (2012).
22.	 Li, H. et al. Bioinformatics 25, 2078–2079 (2009).
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