Manual

Centre National De LA Recherche scientifique And PAVIE (LAusanne University)
C. Notredame, P. Bucher, J.A. Gauthier,E. Widmer
SALTT
 User Guide
and
Reference Manual
SALTT User Guide
(Version 3.28, October 2005)
3License and Terms of Use

3SALTT is distributed under the Gnu Public License

3SALTT code can be re-used freely

4Addresses and Contacts

4Contributors

4Addresses

5Citations

5Other Contributions

6Bug Reports

7What Is SALTT ?

7What is SALTT?

7What does it do?

7Which Data?

7How can I use it?

8What SALTT Can and Cannot do for you …

8Estimating Substitution Matrices

8Making Pairwise Sequence Alignments

8Making Multiple Sequence Alignments

8Building NJ Clusters

8Analyzing Multi-Channel Data

8How Does SALTT works

9Installation

9Standard Installation

10Extended Installation and other Packages

11Quick Start

11Matrix Training: pavie_seq2pavie_mat

11Alignment Computation: pavie_seq2pavie_aln

11Multiple Alignment: pavie_seq2pavie_msa

11Cluster: pavie_seq2pavie_tree

12Sequence Sort: pavie_seq2pavie_sort

13Recent Modifications

14Manual

14Training Matrices with SALTT

14Mono Channel Training

15Multiple Channel Training

16Using the age as a channel

17Validation of the Matrix Training Procedure

17Distance Matrices, Clustering and Sequence Sorting

19Pairwise and Multiple Alignment Computation

21Frequently Asked Questions

21Matrix Training

21Q: No Question yet…

22Reference Manual

23Building a Server

24Formats

24Parameter files

24Sequence Name Handling

25Automatic Format Recognition

25Mono Channel Sequences

25Multi Channel Sequences

26Alignments

26Matrices Lists

26Matrices

28Known Problems

29To Do…

License and Terms of Use

SALTT is distributed under the Gnu Public License

Please make sure you have agreed with the terms of the license attached to the package before using the T-Coffee package or its documentation. T-Coffee is a freeware open source distributed under a GPL license. This means that there is no restriction to its use, either in an academic or a non academic environment.

SALTT code can be re-used freely

Our philosophy is that code is meant to be re-used, including ours. No permission is needed, although we are always happy to receive pieces of improved code.
Addresses and Contacts
Contributors

SALTT is developed by a dedicated team that includes

Cédric Notredame, CNRS, Marseille, France
Jacque-Antoine Gauthier, Lausanne University, Lausanne, Switzerland
Eric Widmer, Lausanne University, Lausanne, Switzerland
Philipp Bucher, ISREC, Lausanne, Switzerland
Addresses

We are always very eager to get some user feedback. Please do not hesitate to drop us a line at: cedric.notredame@europe.com. SALLT is part of the T-Coffee package, its latest updates of T-Coffee are always available on: http://igs-server.cnrs-mrs.fr/~cnotred.

Citations

Please cite the original T-Coffee paper.
	Notredame C, Higgins DG, Heringa J.
	Related Articles, [image: image1.png]

[image: image2.png]

Links

	T-Coffee: A novel method for fast and accurate multiple sequence alignment.
J Mol Biol. 2000 Sep 8;302(1):205-17.
PMID: 10964570 [PubMed - indexed for MEDLINE]

Other useful publications include:

Other Contributions
We do not mean to steal code, but we will always try to re-use pre-existing code whenever that code exists, free of copyright, just like we expect people to do with our code. However, whenever this happens, we make a point at properly citing the source of the original contribution. If ever you recognize a piece of your code improperly cited, please drop us a note and we will be happy to correct that.

Bug Reports

What Is
SALTT
?

What is SALTT?

Before going deep into the core of the matter, here are a few words to quickly explain some of the things SALTT will do for you.

What does it do?

In some instances, social science data can take the form of sequences. For instance, life courses can be coded as sequences with one symbol/year and one type of symbol/state. Any chronological data can be coded this way. However your data does not not have to be chronological, but you must be able to turn it into a string with a finite alphabet.
This package is meant to manipulate and analyze data thus coded using bioinformatics techniques, such as optimal sequence matching and multiple sequence alignments. At this point, the package is able to carry out a series of tasks that include:

-Estimating substitution matrices from unaligned sequences

-Clustering sequences using the NJ algorithm

-Estimating multiple sequence alignments

-Doing multi-channel analysis

Which Data?

Your data must be sequence-like, in other words it must be a collection of strings where the value of each symbol indicate a state and where the position of each symbol in the sequence is a chronological (or other indication). The order must be defined so that the ordre cannot be arbitraryly redefined.
How can I use it?

SALTT is not an interactive program. It runs from your UNIX, Linux or Cygwin command line and you must provide it with the correct parameters. Installing and using SALTT requires a minimum acquaintance with the Linux/Unix operating system.
What SALTT Can and Cannot do for you …
IMPORTANT: All the files mentioned here (sample_seq...) can be found in the example directory of the distribution.

Estimating Substitution Matrices
Making Pairwise Sequence Alignments
Making Multiple Sequence Alignments
Building NJ Clusters
Analyzing Multi-Channel Data

How Does SALTT work
<To be documented>
Installation

What You Should Know

Saltt is included in the distribution of T-Coffee. To run Saltt, you should therefore run T-Coffee with a special instruction:

EXCL: t_coffee -other_pg saltt <parameters>
Standard Installation

1-decompress distribution.tar.gz

gunzip distribution.tar.gz

2-untar distribution.tar

tar -xvf distribution.tar

3-This will create the distribution directory with the following structure:

distribution/bin

distribution/doc/t_coffee_doc.pdf,t_coffee_doc.html

distribution/t_coffee_source

distribution/example

distribution/html

4-go into the main directory and type:

./install

You will know the installation proceeded completely with the mention:

Installation of t_coffee Successful

5-add the bin folder to your path:

set path = ($path . <address of the saltt bin folder>)
Extended Installation and other Packages

SALTT only requires Perl to be installed
Quick Start

IMPORTANT: All the files mentioned here (sample_seq...) can be found in the example directory of the distribution.
Matrix Training: pavie_seq2pavie_mat
Write your sequences in the same file (Swiss-prot, Fasta or Pir) and type.

EXCL: t_coffee -other_pg saltt -in pavie.seq –action +pavie_seq2pavie_mat

This will run an iterative matrix trainning procedure and will output two files:

pavie_matrix.ch_1.cy_7.pavie_mat: a substitution matrix
pavie_matrix.cycle_7.mat_list: a list of matrix files.
Alignment Computation: pavie_seq2pavie_aln
Make pair-wise alignment of your sequences

EXCL: t_coffee -other_pg saltt -in pavie.seq –action +pavie_seq2pavie_aln pavie.mat

This will use pavie.mat to align your sequences. You can also generate a distance matrix with:

EXCL: t_coffee -other_pg saltt -in pavie.seq –action +pavie_seq2pavie_aln pavie.mat _MATDIST_
Multiple Alignment: pavie_seq2pavie_msa

Turn your dataset into a multiple sequence alignment

EXCL: t_coffee -other_pg saltt -in pavie.seq –action +pavie_seq2pavie_aln pavie.mat –output clustalw

This will use pavie.mat to multiply align your sequences.

Cluster: pavie_seq2pavie_tree
Turn your dataset into a Neighbor Joinning cluster

EXCL: t_coffee -other_pg saltt -in pavie.seq –action +pavie_seq2pavie_tree pavie.mat –output newick

This will use pavie.mat to multiply align your sequences, estimate distances and use them to derive a hierarchichal binary clustering known as a neighbor Joinning tree.

Sequence Sort: pavie_seq2pavie_sort

Will sort your dataset according to the order induced by the tree:

EXCL: t_coffee -other_pg saltt -in pavie.seq –action +pavie_seq2pavie_sort pavie.mat _TREESORT_ -output fasta_seq

If you want your sequences to come out sorted AND aligned, you can request the msa output:

EXCL: t_coffee -other_pg saltt -in pavie.seq –action +pavie_seq2pavie_sort pavie.mat _TREESORT_ -output clustalw
You can also request a sort based on the most central sequence of your dataset

EXCL: t_coffee -other_pg saltt -in pavie.seq –action +pavie_seq2pavie_sort pavie.mat _IDSORT_ -output fasta_seq

Recent Modifications

Warning: This log of recent modifications is not as thorough and accurate as it should be.
Manual

This manual is at a very preliminary stage of redaction and will only show you how to do the very basic with SALTT.

Training Matrices with SALTT
Mono Channel Training

Principle
Your sequences must be in FASTA format:
seq_reformat -in pavie.seq -action +pavie_seq2pavie_mat [_IDXX_TWEXX[THRid]_[CHANNELn]

The program runs iteratively. It starts with the ID matrix and updates its matrix until convergeance is reached. The following arguments can be given. Concatenate multiple arguments and make sure they are separated with _. Also make sure the command line starts and finishes with the "_" symbole: _XXXXX_XXXX_

The program supports several parameters that must be indicated after the substitution matrix, these include:
TWE[xx]: Trainning Weights

When trainning the matrices, the sequences are aligned two by two and each alignment is assigned a weight used in the trainning. This weight can be controled using the TWE parameter. Currently implemented values include:
TWE00:
No weighting

TWE01:
Default, n_id_pairs/n_match

TWE02:
n_id_pairs/aln_length

TWE03:
n_id_pairs/MIN(length seq1, length seq2)Default

TWE04:
n_id_pairs/MAX(length seq1, length seq2)

TWE05:
score as measured with the matrix

simweight: NOT SUPPORTED ANYMORE
THR[id] : Trainning Threshold:

THR[id]: id is a threshold that filters alignments. For instance, with THR50, the program will only extract the counts from alignments with more than 50% ID or SIM (depending on the weighmode). The purpose of this filter is to discard bad alignments that should not contribute at all to the final matrix.

The ID value is the one estimated using the TWE mode.

SAMPLE[n] : Sampling:
Given N sequences, the trainning requires aligning N*N sequences. For large datsets, this maybe too computationnaly demanding. The _SAMPLE[N]_ option makes it possible to restrict the trainning on a subset of the sequences.

In _SAMPLE[n]_ , n is the number of random pairs sampled (without removal) at each training round. The pairs are chosen during the first round and remain the same later on. Special values include:
SAMPLE100: will randomly select 100 pairs (different at each round)

SAMPLE0: will select all the pairs (Default)
Example

EXCL: t_coffee -other_pg saltt -in pavie.seq -action +pavie_seq2pavie_mat _TWE03_THR60_SAMPLE20_
This will carry out some trainning on 20 pairs of sequences (SAMPLE20, using TWE03 to evaluate the alignment and restricting the matrix estimation to pairs of sequences having a score of at least 60% (THR60),
Multiple Channel Training

Principle
The multiple channel matrix trainning is a generalization of the mono-channel trainning. In this case, rather than having one sequence for each life, one has several channel associated with each life. For instance, channel 1 may contain the family history, channel 2 the employment and so on.

During the trainning, the program aligns pairs of channels rather than pairs of sequences. One matrix per channel is estimated and the procedure runs iteratively until convergenace.

The multiple channel supports all the parameters of the mono-channel with the only difference that it outputs several matrices rather than one. Specific parameters include:

CHANNEL[N] : Multi-Channel Definition

CHANNEL[n]: n is the number of channels and must be provided to instruct the program on the number of channels contained in the sequences. By default, n is set to 1 and mono-channeling is assumed. If multi-channeling ius used, it is critical that the sequences are provided in the appropriate order.

FORMATING Multi-Channel SEQUENCES

Several simple rules apply when formating multi-channel sequences. These include

1-One can use as many channels as required.

2-Channel Alphabets are totally independant and can use similar symbols

3-All the channels are in the same FASTA file

4-Channels must be grouped and contain the same # of sequences

5-String N of channel X CORRESPONDS to string N of channel Y

6-String N of channel X Must have the same lenght as string N of channel Y

7-String names are NON-Informative
The following is an example of a multi channel file with two channels and three sequences:

>string1.channel1

abcdef

>string2.channel1

ab

>string3.channel1

abc

>string1.channel2

abzeff

>string2.channel2

ef

>string3.channel2

fxx

Example

EXCL: t_coffee -other_pg saltt -in pavie.mcseq -action +pavie_seq2pavie_mat _TWE03_THR60_SAMPLE20_CHANNEL2_
This will carry out some trainning on 20 pairs of sequences (SAMPLE20, using TWE03 to evaluate the alignment and restricting the matrix estimation to pairs of sequences having a score of at least 60% (THR60). CHANNEL2 declares that there are two channels.
Using the age as a channel

Principle
It is possible to use the age as an extra channel. To do so, you simply need to add the flag _AGECHANNELX_.
X is the weight assigned to the age difference between two matched symbols.

For instance, using _AGECHANNEL10_ and matching the 5th symbol of sequence A with the 7th of sequence B would result in a penalty of |7-5|*-1*10=-20.

seq_reformat -in pavie.seq -action +pavie_seq2pavie_mat [_IDXX_TWEXX[THRid]_[CHANNELn]_AGECHANNEL1_
It is possible to set the year corresponding to the first symbol of a sequence in the header.

>name _FIRSTYEARXX_

where XX will be used as the offset of the first year
If you have a multic channel set, the FIRSTYEAR must be set on the first channel. Any setting made in the susequent channels will be ignored.
Note: Gaps are ignored
Validation of the Matrix Training Procedure

MATRIX COMPARISON: mat2cmp

Given two substitution matrices, obtained through different trainning procedure, it is possible to quantify the similarity between the two matrices by estimating the correlation factor (r). This can be achieved using the +mat2cmp flag:

EXCL: t_coffee -other_pg saltt -in mat1 -input matrix -in2 mat2 -input2 matrix -action +mat2cmp

PAVIE_SEq2random_seq
The purpose of the trainning is to discover and quantify relationships between seemingly different symbols. This property can be used to check the validity of the trainning procedure. By arbitrairily turning a given symbol into two seemingly different symbols, one should be able to establish the equivalence of the two symbols.

Sequences can be arbitrarily degenerated using the pavie_seq2pavie_random modifyer:

EXCL: t_coffee -other_pg saltt -in pavie.seq -action +pavie_seq2random_seq axw > degenerated.seq

In this case, ‘a’ symbols will be randomly turned into x and w. One should then train a matrix on the degenerated sequences and verify that the cost for aligning x to w is very low.

EXCL: t_coffee -other_pg saltt -in pavie.seq -action +pavie_seq2pavie_mat degenerated.seq
PAVIE_SEq2NOISY_seq
The purpose of this modifyer is to add controled noise to your sequences. If you want to randomly modify 5 % of the symbols:

EXCL: t_coffee -other_pg saltt -in pavie.seq -action +pavie_seq2noisy_seq 5 >noisy.seq
Substitutions are made within the alphabet defined by the sequences. If you have several channels and if they use different alphabets, you must add noise to them separately.

It is possible to restrict the noise to the emission of one symbol. For instance, if x is the symbol for missing data, use:

EXCL: t_coffee -other_pg saltt -in pavie.seq -action +pavie_seq2noisy_seq 5 x >noisy.seq
This will turn 5% of the symol of pavie.seq into x.

Distance Matrices, Clustering and Sequence Sorting
Given a set of sequences and asscociated substitution matrices, it is possible to compute a distance matrix and use it to derive a hierarchical binary clustering (Neighbor Joinning tree). In order to be compared, the sequences need to be aligned, the following functions therefore support all the parameters associated with the alignment (GEP, TGEF...)

PAVIE_SEQ2PAVIE_DM

This function turns a set of sequences into a distance matrix. It supports all the parameters of the trainning matrix procedure, with the exception of TWExx that must be replaced with _IDxx_. For instance:

MATDIST or _MATSIM_

Mat dist forces SALTT to output a distance (or a similarity) matrix
EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_dm pavie.mat _MATDIST_ID03_

 Will output a distance matrix using ID03. Other parameters include:

MATSIM : outputs a similarity matrix

-MATDIST_: outputs a distance matrix
MSA

It is possible to provide a multiple sequence alignment rather than a set of unaligned sequences. When doing so the pairwise alignments are not recomputed but only extracted from the multiple alignment.. The use of an alignment must be declared using the _MSA_ tag. The MSA can be in any format (FASTA, ClustalW, MSF).

EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_dm pavie.mat _MATDIST_ID03_MSA_
Matrix Formats: _MFORMAT1_ and _MFORMAT2

Two formats are available:

_MFORMAT1: square matrix

EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_dm pavie.mat _MATDIST_ID03_MSA_MFORMAT1_

or

EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_dm pavie.mat _MATDIST_ID03_MSA_

10001102 0 300 2200 6600 3200

10003102 300 0 2000 7500 3500

10022101 2200 2000 0 5300 2200

10026101 6600 7500 5300 0 3500

10035102 3200 3500 2200 3500 0

_MFORMAT2 (default): List of Pairwise distances (ideal for selecting pairs of sequences.

EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_dm pavie.mat _MATDIST_ID03_MSA_MFORMAT2_

TC_DISTANCE_MATRIX_FORMAT_01

SEQ_INDEX 10001102 0

SEQ_INDEX 10003102 1

SEQ_INDEX 10022101 2

SEQ_INDEX 10026101 3

SEQ_INDEX 10035102 4

PW_SEQ_DISTANCES

BOT 0 1 3.00 10001102 10003102 3.00

TOP 1 0 3.00 10003102 10001102 3.00

BOT 0 2 22.00 10001102 10022101 22.00

TOP 2 0 22.00 10022101 10001102 22.00

BOT 0 3 66.00 10001102 10026101 66.00

TOP 3 0 66.00 10026101 10001102 66.00

BOT 0 4 32.00 10001102 10035102 32.00

TOP 4 0 32.00 10035102 10001102 32.00

BOT 1 2 20.00 10003102 10022101 20.00

TOP 2 1 20.00 10022101 10003102 20.00

BOT 1 3 75.00 10003102 10026101 75.00

TOP 3 1 75.00 10026101 10003102 75.00

BOT 1 4 35.00 10003102 10035102 35.00

TOP 4 1 35.00 10035102 10003102 35.00

BOT 2 3 53.00 10022101 10026101 53.00

TOP 3 2 53.00 10026101 10022101 53.00

BOT 2 4 22.00 10022101 10035102 22.00

TOP 4 2 22.00 10035102 10022101 22.00

BOT 3 4 35.00 10026101 10035102 35.00

TOP 4 3 35.00 10035102 10026101 35.00

AVG 0 10001102 * 30.75

AVG 1 10003102 * 33.25

AVG 2 10022101 * 29.25

AVG 3 10026101 * 57.25

AVG 4 10035102 * 31.00

TOT TOT * 36.30

PAVIE_SEQ2PAVIE_TREE

This function turns a set of sequences into a hierarchical cluster
EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_tree pavie.mat _ID03_ -output newick
 Will output a tree based on the distance matrix obtained with the ID03 measure. The algorithm used to turn the distance matrix into a tree is called the neighbor joinning algorithm.
The tree thus obtained can be used to visualize the relationship in the data. It can also be used to sort the sequences (pavie_seq2pavie_sort, or to multiply align them (pavie_seq2pavie_msa).

PAVIE_SEQ2PAVIE_SORT

This function will compare and sort a set of sequences. This comparison will rely on a comparison of the sequences, followed by either a tree computation and some reordering induced by the tree, or a standard identity based re-ordreing.

This function supports all the flags of pavie_seq2pavie_msa, as well as those of pavie_seq2pavie_mat. The function used to compare the sequences is defined by IDxx.

Multi channel is NOT supported.
IDSORT:
 this mode will compare the sequences using _IDxx_, identify the one that is the less distant from the rest of the group (center) and order all the sequences according to their distance to that sequence:

EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_sort pavie.mat _ID03_IDSORT_ -output fasta

MASTERSORT[seqname]:

 this mode will compare all the sequences to [seqname] using IDxx and output the sequences according to their distance to [seqname]

TREESORT[seqname]:

 this mode will compare all the sequences to [seqname] using IDxx, turn the resulting distance matrix into a tree and turn that tree into an MSA. The output order will be that of the tree. All the MSA flags (pavie_seq2pavie_msa) are supported (_QUICKTREE_, USETREE...).

EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_sort pavie.mat _ID03_TREESORT_ -output fasta

Age Variations

When outputing alignments, the program measures the average offset difference between matched sequences. If the data is longitudinal and if each symbol corresponds to one year, this amounts to measure the average age difference in the aligned sequences.

To capture that information:

EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_aln pavie.mat | grep alignment | awk ‘{print $10’}
Pairwise and Multiple Alignment Computation
PAVIE_SEQ2PAVIE_ALN: Mono Channel Pairwise Alignment
This function will compute all the pair-wise alignments associated with a set of sequences.
Multi-channel is supported.

EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_aln pavie.mat _ID03_
GEP[value]:

 Sets the GEP value. By default this value is estimated as the off diagonal average of the substitution matrix.

IDxx
Similar to _TWExx

_TGEF[0-100]
Terminal Gap Extenstion Factor. If set to 100, terminal gaps are penalized like internal gaps, TGEF50=> terminal gaps cost 50% of the cost of internal gaps.
PAVIE_SEQ2PAVIE_ALN: MULTI Channel Pairwise Alignment

This function will compute all the pair-wise alignments associated with a set of sequences.

Multi-channel is supported.

EXCL: t_coffee -other_pg saltt –in pavie.mcseq –action +pavie_seq2pavie_aln pavie.mat_list _ID03_
GEP[value]:

 Sets the GEP value. By default this value is estimated as the off diagonal average of the substitution matrix.

IDxx
Similar to _TWExx

_TGEF[0-100]
Terminal Gap Extenstion Factor. If set to 100, terminal gaps are penalized like internal gaps, TGEF50=> terminal gaps cost 50% of the cost of internal gaps.

PAVIE_SEQ2PAVIE_MSA: Mono Channel Multiple Sequence Alignment
This function will compute a multiple sequence alignment associated to a sequence set. It supports the pavie_seq2pavie_aln, pavie_seq2pavie_tree and pavie_seq2pavie_mat flags.
Multi-channel is NOT supported
EXCL: t_coffee -other_pg saltt –in pavie.seq –action +pavie_seq2pavie_aln pavie.mat _QUICKTREE_ -output msa >pavie.msa
QUICKTREE

Makes a fast clustering that only uses the matrix, without supporting any other parameters of pavie_seq2pavie_aln

USETREE[file]

Use a tree as produced by pavie_seq2pavie_tree

DEFAULTTREE

Use pavie_seq2pavie_dm to produce the distance matrix used to compute the guide tree. This mode is the default and it supports all the flags.
COLORIZING Multiple sequence alignments

It is possible to color a multiple sequence alignment according to its level of conservation:
EXCL: t_coffee -other_pg saltt –in pavie.msa –action +evaluate boxshade 50 –output color_html

In this exemple, 50 refers to the amount of conservation needed for a column to be colorized. Red indicates highly conserved columns down to blue for the most poorly conserved.
Frequently Asked Questions

Matrix Training
Q: No Question yet…
A: No Answer yet.

Reference Manual

<UNDOCUMENTED>
Building a Server

<UNDOCUMENTED>

Formats

Parameter files

Parameter files used with -parameters, -t_coffee_defaults, -dali_defaults... Must contain a valid parameter string where line breaks are allowed. These files cannot contain any comment, the recommended format is one parameter per line:

<parameter name>=<value1>,<value2>....

<parameter name>=.....

Sequence Name Handling

Sequence name handling is meant to be fully consistent with ClustalW (Version 1.75). This implies that in some cases the names of your sequences may be edited when coming out of the program. Five rules apply:

Naming Your Sequences the Right Way

1-No Space

Names that do contain spaces, for instance:

>seq1 human_myc

will be turned into

>seq1

It is your responsibility to make sure that the names you provide are not ambiguous after such an editing. This editing is consistent with Clustalw (Version 1.75)

2-No Strange Character

Some non alphabetical characters are replaced with underscores. These are: ';:()'

Other characters are legal and will be kept unchanged. This editing is meant to keep in line with Clustalw (Version 1.75).

3-> is NEVER legal (except as a header token in a FASTA file)

4-Name length must be below 100 characters, although 15 is recommended for compatibility with other programs.
5-Duplicated sequences will be renamed (i.e. sequences with the same name in the same dataset) are allowed but will be renamed according to their original order.

Automatic Format Recognition

Most common formats are automatically recognized by t_coffee. See -in and the next section for more details. If your format is not recognized, use readseq or clustalw to switch to another format. We recommend Fasta.

Mono Channel Sequences

Sequences must be in the so called “fasta” format. Sequences do not need to have the same length. The purpose of the alignment procedure (Optimal Matching) is to make sure that corresponding portions of the sequences end up aligned with one another. Here is an example of fasta format. Save this file under the name pavie.seq to run the examples in this documentation.

>37F

ddggggaaaaaeeebbbbbbbbbbbb

>79F

ggggggggggaaeeeeeeee

>98F

ggggaggggaaaaaaaebee

>111F

ggggggggggcgbbbgggbbbbbbbbbbbbbbbbb

>119F

eeeeeeeeeeeeebbbbbbbb

>123F

gggggggggggeeeeeee

>126F

ggggggggaaaaaadaaaggagggbbbgbbbgbbbbcbbbbb

>140F

geeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

>151F

ggggaaaaaaaabbbb

>224F

ggggggggeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Multi Channel Sequences

Multiple channel sequences must also come in fasta format. The name of the sequences is not informative for the program, and the channel associated with a sequence is only a consequence of its index. For instance, the first string is assumed to be the first channel of sequence 1, and so on.

In the following example, (save it as multi_channel_pavie.seq to run the multi channel example), there are three sequences and two channels. When using this datates to train matrices, one must indicate the number of channels with _CHANNEL2_.

The reason for keeping the channel separate is to insure the possibility of generating the channels separately and then concatenate them in the final sequence file

>string1.channel1

abcdef

>string2.channel1

ab

>string3.channel1

abc

>string1.channel2

abzeff

>string2.channel2

ef

>string3.channel2

fxx

Alignments

Alignments can come in what is known by biologists as the CLUSTAL format, an interleaved format:

<empy line>
[Facultative]n

<line of text>
[Required]

<line of text>

[Facultative]n

<empty line>

[Required]

<empty line>

[Facultative]n

<seq1 name><space><seq1>

<seq2 name><space><seq2>

<seq3 name><space><seq3>

<empty line>

[Required]

<empty line>

[Facultative]n

<seq1 name><space><seq1>

<seq2 name><space><seq2>

<seq3 name><space><seq3>

<empty line>

[Required]

<empty line>

[Facultative]n

An empty line is a line that does NOT contain amino-acid. A line that contains the ClustalW annotation (.:*) is empty.

Spaces are forbidden in the name. When the alignment is being read, non character signs are ignored in the sequence field (such as numbers, annotation…).
Note: a different number of lines in the different blocks will cause the program to crash or hang.
Matrices Lists
Matrices list are output when trainning matrices. They contain the name of the matrices associated with every channel. They can then be used to manipulate multi channel sequences. The format is straightforward, with one filename per line. Absolute and relative UNIX paths are supported.

pavie_matrix.ch_1.cy_3.pavie_mat

pavie_matrix.ch_1.cy_3.pavie_mat
Matrices
Standard biological matrices are supported (like BLAST) although the prefered format is the more human readable PAVIE matrix format:

PAVIE_MATRIX FORMAT

#ALPHABET=abcdeg

A A 0.000

A B -2.798

A C -2.083

A D -2.819

A E -1.728

A G -2.051

B B 0.000

B C -5.167

B D -7.578

B E -1.825

B G -9.508

C C 0.000

C D -5.597

C E -5.675

C G -7.527

D D 0.000

D E -6.363

D G -4.937

E E 0.000

E G -2.258

G G 0.000

- - -4.528

The BLAST format is also supported:
BLAST_MATRIX FORMAT\n

ALPHABET=AGCT

 A G C T

A 0 1 2 3

G 0 2 3 4

C 1 1 2 3

...
The alphabet can be freely defined

Known Problems

1-Sensitivity to sequence order: It is difficult to implement a MSA algorithm totally insensitive to the order of input of the sequences. In t_coffee, robustness is increased by sorting the sequences alphabetically before aligning them. Beware that this can result in confusing output where sequences with similar name are unexpectedly close to one another in the final alignment.

To Do…

-extend multi-channel.
PAGE
1

